Document Type
Article
Publication Date
2015
Published In
Nanomaterials and Nanotechnology
Keywords
MWCNT, iPP, Thermal and electrical conductivity, Percolation, Shearing and anisotropy
Abstract
Polymer nanocomposite materials of higher thermal and electrical transport properties are important to nanotechnology applications such as thermal management, packaging, labelling and the textile industry. In this work, thermal and electrical conductivities in nanocomposites of multiwalled carbon nanotubes (MWCNT) and isotactic polypropylene (iPP) are investigated in terms of MWCNT loading, temperature dependence, and anisotropy caused by melt shearing. IPP/MWCNT nanocomposites show a significant increase in thermal and electrical conductivity with increasing MWCNT loading, reaching 17.5 W/m K and 10−6 S/m, respectively, at a MWCNT 5.0 weight percentage at 40°C. The increase in MWCNT/iPP is more than would be expected based on the additivity rule, and suggests a reduction of the interfacial thermal electrical resistance at nanotube-nanotube junctions and the nanotube-matrix interface. The anisotropy in both conductivities was observed to be larger at low temperature and to disappear at higher temperature due to isotropic electrical and thermal contact in both directions. Oriented MWCNT/iPP nanocomposites exhibit higher electrical and thermal conductivities, attributed primarily by orientation of nanotubes due to the shearing fabrication process.
Grant Information
This work was supported by the Department of Physics at WPI as well as grants from the NSF under the awards DMR-0821292 MRI, DMR-0602473, and DMR-1206010.
DOI
10.5772/60083
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Recommended Citation
Kalakonda, P.; Cabrera, Y.; Judith, R.; Georgiev, G. Y. ; Cebe, P.; and Iannacchione, G. S. (2015). Studies of Electrical and Thermal Conductivities of Sheared Multi-Walled Carbon Nanotube with Isotactic Polypropylene Polymer Composites. Nanomaterials and Nanotechnology 5: 2. https://doi.org/10.5772/60083