
Digital Commons @
Assumption College

Honors Theses Honors Program

2018

Relationship of Head Circumference and Epilepsy
Severity in Infants with Tuberous Sclerosis
Complex
Alexis Levine
Assumption College

Follow this and additional works at: https://digitalcommons.assumption.edu/honorstheses

Part of the Biology Commons, and the Neuroscience and Neurobiology Commons

This Honors Thesis is brought to you for free and open access by the Honors Program at Digital Commons @ Assumption College. It has been
accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Assumption College. For more information, please
contact digitalcommons@assumption.edu.

Recommended Citation
Levine, Alexis, "Relationship of Head Circumference and Epilepsy Severity in Infants with Tuberous Sclerosis Complex" (2018).
Honors Theses. 32.
https://digitalcommons.assumption.edu/honorstheses/32

https://www.assumption.edu/?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.assumption.edu/?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.assumption.edu?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.assumption.edu?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.assumption.edu/honorstheses?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.assumption.edu/honors?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.assumption.edu/honorstheses?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.assumption.edu/honorstheses/32?utm_source=digitalcommons.assumption.edu%2Fhonorstheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@assumption.edu


Relationship of Head Circumference and Epilepsy Severity in Infants with 
Tuberous Sclerosis Complex 

Faculty Supervisor: Michele Lemons, PhD 

Natural Sciences 

A Thesis Submitted to Fulfill the Requirements of the Honors Program at Assumption 
College 

Spring 2018 

Alexis Levine1,2, Elaina Little1, Peter Davis1, Michele Lemons2 
1Department of Neurology, Boston Children’s Hospital, Sahin Laboratory 

2Department of Natural Sciences, Assumption College 



2 

Abstract 

Tuberous sclerosis complex (TSC) is a rare genetic disorder, characterized by 

high incidence of seizures and tubers (benign cellular abnormalities that appear on brain 

imaging). Current literature reports an increased head circumference within the TSC 

population, but the implications, exact rate, or how big the increase is, remains unknown. 

We hypothesized that increased head circumference would correlate with epilepsy 

severity in infants with TSC.  We examined clinical data from 121 infants diagnosed with 

TSC who were enrolled in the multi-site, prospective TSC autism center for excellence 

network (TACERN) study. We calculated each infant’s head circumference z-score from 

each study visit by comparing collected values with those reported by the World Health 

Organization of healthy child head circumference growth. The overall mean head 

circumference z-score across all study visits of all TACERN participants was 0.97 with 

no significant sex differences. The number of seizure types correlated with head 

circumference z-score are as follows: infants with no seizures had a mean z-score of 0.57, 

those with 1 seizure type had a mean z-score of 0.88, and those with 2 or more seizure 

types had a mean z-score of 1.31. Thus, our hypothesis was partially supported. This data 

suggests that a larger head circumference may serve as a biomarker for epilepsy in 

children diagnosed with TSC, enabling earlier treatment for epilepsy, and thus improved 

neurodevelopment.  
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Introduction 

Developmental disabilities are diagnosed at alarmingly high rates. For example, 

autism spectrum disorder (which will be referred to as “autism” here) was present in one 

in every 150 births in the year of 2000; today, it is present in one in every 68 children 

(Center for Disease Control and Prevention (CDC), 2018). TSC is a genetic disorder that 

occurs in one of every 6,000 births and is associated with a high rate of cognitive 

disabilities and autism (Davis et al., 2015). Having a child with a disability can put a lot 

of strain on a family, because that child requires additional care, time, and attention. 

Thus, any research that can improve the neurological outcomes of TSC, or any childhood 

disability may help those affected by the disease. 

Individuals with TSC have an approximate 50% chance of developing autism 

(Curatolo et al., 2015), making TSC one of the most frequent genetic comorbidities, or 

co-occurring diseases, of autism (CDC, 2018). While there is no definitive cause of the 

autism present with (or without) TSC, the autism that occurs with individuals with TSC 

presents similarly to autism alone (Davis et al., 2015). For example, stereotypical 

behaviors seen in autism, such as hand flapping, are seen with autism in TSC. While 

autism is not a major focus of this thesis, if we are able to show that head circumference 

could be a biomarker, or indicator of risk, of severe epilepsy and therefore treat 

individuals sooner, we could preventively treat for autism (i.e.: applied behavioral 

analysis therapy) as well and perhaps lessen the severity of autism-associated symptoms. 

Additionally, by preventively treating for epilepsy alone, we may be preventing damage 

to healthy brain tissue, which could result in autism-associated symptoms. Epilepsy 

occurs in 20% of all cases of autism (Besag, 2017); thus, epilepsy alone may not convey 
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an increased risk of autism, severe epilepsy that is associated with changes in 

neurodevelopment, may increase the risk of autism in patients with TSC. 

Increased head circumference in individuals with TSC 

Interestingly, a common symptom seen in patients with autism alone and TSC 

(with or without autism as a comorbidity) is macrocephaly, or an enlarged head above 2 

standard deviations above the mean, or in the 97th percentile (Lainhart et al.,	2006). The 

rate of macrocephaly in autism is 15.7% as compared to a 3% risk in the typically 

developing population (Viginoli et al., 2015). Macrocephaly occurs at a rate of 14-29.7% 

in TSC and other developmental disorders together, but an exact rate of macrocephaly in 

the TSC population alone was not specified (Sacco et al., 2015). While the literature 

often notes that there is an increased head circumference associated with TSC, the 

literature does not go any further to investigate how macrocephaly relates to the other 

symptoms that occur with TSC.  

The presence and connection between tubers and seizures in individuals with TSC 

In individuals with TSC, many organ systems are affected by the presence of 

hamartomas, collections of abnormal cells. In the brain, these hamartomas are referred to 

as tubers. Tubers are often identified by magnetic resonance imaging (MRI) that may 

have been originally performed to evaluate seizures in an individual with TSC. This is a 

common way that infants are diagnosed with TSC, if there is not a genetic risk of TSC in 

the family. Due to advances in imaging techniques, some fetuses are diagnosed before 

birth because tubers in the brain or hamartomas in the heart are sometimes seen during 

routine prenatal anatomy scans. When this is not the case, as previously mentioned, the 

onset of epilepsy usually leads to a diagnosis. Tubers should not be confused with 
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cancerous tumors, which are large malignant masses of excess tissue that can grow and 

directly cause damage to the body. Tubers are static structures and do not tend to grow 

over the lifetime.  

Tubers can be thought of as a type of benign tumor, that represent areas of a high 

concentration of abnormally developed cells that are produced instead of typical cells. 

Abnormal cells within tubers take the place of healthy cells, rather than the abnormal 

cells adding to the total number of cells in the brain as reviewed by Crino et al. (2010). 

While the exact mechanism of tuber formation is not known, the mechanism of formation 

of subependymal giant cell astrocytomas (SEGAs) (a tumor commonly found in patients 

with TSC) is known, and some researchers have proposed applying the formation 

mechanism of SEGAs to tuber formation as reviewed by Crino et al. (2010). The SEGA 

formation mechanism, when applied to tuber formation, proposes a type of “double hit 

mechanism.” A TSC gene mutation would occur in a neuroepithelial progenitor cell in the 

developing brain, and this mutation would be in conjunction with somatic mutations of 

one of the TSC genes elsewhere, and both lead to dysfunctional proteins produced by the 

TSC genes (reviewed by Crino et al., 2010). The TSC genes are regulators of cell 

development in the mechanistic target of rapamycin (mTOR) pathway (a cell 

development pathway). When this pathway is activated, the mutated protein is not able to 

regulate the activity of mTOR. Thus, cytomegaly occurs in the original progenitor cell 

such that giant cells are created, forming a tuber (reviewed by Crino et al., 2010). This 

information is important, because it suggests that there are cellular changes in the brain in 

those with TSC beyond what we see as tubers; these changes could be contributing to 
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epilepsy, as we know that there is a link between tubers and the type and frequency of 

seizures in those with TSC. 

90% of all TSC patients experience seizures (Vignoli et al., 2015). Tuber burden, 

or the number of tubers in the brain, is correlated to the frequency (i.e.: daily) of seizures. 

Tuber location is known to play a role in the type of seizure seen in an individual with 

epilepsy and TSC. For example, infantile spasms are the most common type of seizures 

seen in infants with a diagnosis of TSC, and it has been demonstrated that a high tuber 

burden in any lobe of the brain conveys a high risk of having infantile spasms (Doherty et 

al., 2005). Infantile spasms are characterized by onset, or start, in infancy and may 

present with a subtle head drop that may go unrecognized as a seizure to a caregiver. In 

the TSC population, 74.5% of individuals who had infantile spasms in infancy later 

developed refractory, or uncontrollable, epilepsy (Chu-Shore et al., 2010). The longer 

infantile spasms go unrecognized, and therefore untreated, the more likely the child is to 

develop refractory epilepsy and developmental disorders (Shields, 2018). Additionally, 

when seizures are left untreated, individuals are at risk for epileptic encephalopathy, or 

damage to healthy tissue, caused by seizures. Since we know this relationship exists, it is 

important to prevent this from happening; if we are able to show that head circumference 

is related to epilepsy severity, we can use head circumference as a biomarker and identify 

which infants may be at risk of the consequences of epilepsy. Eventually, we may even 

be able to treat these high-risk infants preventively, so their epilepsy does not reach the 

refractory status, and thus, decrease the damage to their brains caused by seizures. 

In recent years, there have been vast developments in the research of TSC. 

However, TSC, unlike autism, is not well known to the public, and does not have the 
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immense interest and immediacy of research that autism does. Many researchers have 

reviewed the symptoms associated with TSC and some do note that there is an increased 

rate of macrocephaly, but we have been unable to find any literature investigating the role 

of macrocephaly in the symptomatology, specifically the epilepsy, associated with TSC. 

In fact, the literature has prompted us to examine about the link between head 

circumference and epilepsy in individuals with TSC, but to our knowledge, none has 

been reported to date. Here, we aim to characterize the relationship between head 

circumference and epilepsy severity within infants and toddlers diagnosed with TSC, in 

order to determine if head circumference could be used as a biomarker in the future for 

severe epilepsy in TSC. 

Methods: 

Subject recruitment: 

 Participants in this study were enrolled in the TSC Autism Center of Excellence 

Network (TACERN) at five sites across the United States (Boston Children’s Hospital, 

Cincinnati Children’s Hospital Medical Center, University of Alabama at Birmingham, 

University of California at Los Angeles, and University of Texas at Houston). Infants 

were eligible for the TACERN study if they were diagnosed with TSC before 12 months 

of age. Study visits were at 3, 6, 9, 12, 18, 24, and 36 months of age; however, infants 

could be enrolled into the TACERN study anytime before their first birthday, thus some 

were missing the early study visits. At each study visit, EEG, clinical history, seizure 

diaries, and head circumference measurement were collected. Yearly MRIs on each 

participant were also collected. Full study design, inclusion and exclusion criteria and 

collected information is reported in Davis et al. (2017). Of the 166 TACERN 
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participants, 121 infants were selected for data analysis in this study. Subjects were 

excluded based on the following criteria: premature birth (before 37 weeks estimated 

gestational age), lack of documented epilepsy history, or lack of head circumference 

measurements. All other participants in the cohort were included. Lastly, as the TACERN 

study is longitudinal in design, we were able to compare the same participants over time. 

Measures: 

World Health Organization’s typical head growth data 

Because the TACERN study did not have healthy controls, we used the World 

Health Organization (WHO) head circumference data for healthy boys and girls from 

birth to age five was used as healthy controls (WHO Multicentre Growth Reference 

Study Group, 2007). The WHO collected data on 8,440 healthy infants who were from 

diverse ethnic backgrounds in order to create typical growth curves (World Health 

Organization, 2007). 

This data was also used to calculate head circumference z-scores for each 

subject’s head circumference measurement using MATLAB R2017a (The MathWorks 

Inc., Natick, MA) using the following z-score formula: 

𝑍!,! =
𝐻𝐶!,! − 𝜇!

𝜎!
 

Where 𝑍!,! is the head circumference z-score for subject i at age d days, 𝐻𝐶!,! is the head 

circumference measurement in cm for subject i at age d days, 𝜇! is the WHO population 

mean head circumference measurement in cm at age d days and 𝜎! is the standard 

deviation of the WHO head circumference measurement at age d days. 
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Before z-scores were calculate, all head circumference measurements were 

manually reviewed for measurement errors. Study sites were queried for any 

measurement that showed a standard deviation change greater than 1, from one 

measurement to the next, as well as any that appeared clearly erroneous (i.e.: a smaller 

head circumference at older age, or a single outlying z-score in a sequence of consecutive 

measurements). If the site could not confirm that the measurement was accurate or 

provide a corrected measurement, that data point was excluded from analysis. 

Head circumference was measured at 3, 6, 9, 12, 18, 24, and 36 months of age, 

although many children did not yet have a 36 month measurement, so the analysis was 

stopped at 24 months. Z-score of head circumference was calculated for each participant 

at each age as well as an average z-score that spanned the first two years of life. In order 

to compare any individual regardless of age and, as boys and older children generally 

have larger heads than girls and younger children, respectively, z-score was used instead 

of head circumference in centimeters.  

In order to directly compare the TACERN and WHO participants, the t-score 

formula, as noted below, was used. We could not use standard t-tests because the WHO 

only publishes average head circumferences for each age, by sex; thus, we compared the 

WHO population to the TACERN sample. Additionally, when comparing the WHO 

participants to the TACERN participants we used centimeters instead of z-score because 

the WHO individuals would always have a z-score of 0; thus, centimeters allows for an 

easier visualization of any potential differences. 

𝑡 =
𝑥 − 𝜇!
𝑠/ 𝑛
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Where 𝑥 is the TACERN sample mean, 𝜇! is the WHO population mean, s is the 

TACERN sample standard deviation, and n is the TACERN sample size. This formula 

generates a t-score, or a critical value, then by using that value, the degrees of freedom 

(n-1), and α =0.05, a p-value can be determined by using a t-distribution table. 

Classifying epilepsy severity: 

 Parents were taught to keep seizure diaries indicating the frequency and type 

(infantile spasms, focal seizures, and other seizure types) of their child’s seizures. To 

assess the severity of epilepsy in each case an adapted version of the early childhood 

epilepsy severity scale (E-Chess) was used, which specifically assesses epilepsy 

associated with TSC and best fit the TACERN data (Humphrey et al., 2008). The full E-

Chess scale includes: seizure frequency (i.e.: daily; not seizure duration), how long 

seizures have been occurring, number of seizure types present, number of antiepileptic 

drugs (AEDs) used, and response to treatment. Many subjects had epilepsy onset prior to 

entering the study or did not have enough seizure diary history recorded to accurately 

determine portions of the E-Chess scale; therefore, an adapted version of the E-Chess 

scale, referred to as a “mini E-Chess” score was created. The mini E-Chess scale was 

based on factors that most subjects had these data recorded. The mini E-Chess score was 

based on number of seizure types and number of AEDs; these categories were scored 

according to Table 1. The data recorded in the seizure diaries was used to generate a mini 

E-Chess score for each participant. The total mini E-Chess severity score is attained by 

adding the score from each parameter. In addition to mini an E-Chess score, number of 

seizure types each infant had was also used as a proxy for epilepsy severity. 
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Table 1: Mini E-Chess scoring of epilepsy severity 

Parameter:    
Number of 
seizure types 

0 = no seizures 1 = 1 type 2 = 2 types 
(continues if 
more types, no 
upper limit) 

Number of 
AEDs 

0 = None 2 = 1 or 2 
AEDs 

3 = More than 2 
AEDs 

 

Then a series of two tailed t-tests were ran to examine differences in head circumference 

z-score based on the types of seizure(s) infants had and the number of seizure types each 

infant had. Number of seizure types TACERN participants was used as a representation 

of epilepsy severity in the t-tests more than the type of seizures, because the latter 

subcategories were very small and thus results may not have been reliable. While the 

number of AEDs was included in the mini E-Chess score, number of AEDs was not used 

as a parameter in the t-tests, because number of AEDs alone does not characterize the 

severity of epilepsy. 

Volumetric analysis of brain size MRIs 

 Brain MRIs were analyzed clinically by radiologists at each participant’s 

respective site and they were analyzed volumetrically by the Warfield lab as outlined in 

Tomas-Fernandez and Warfield (2015). The Warfield lab calculated total brain volume, 

and the distribution of volume between different tissue types (white matter, subcortical 

and cortical grey matter, and cerebrospinal fluid) within the brain. The clinical 

radiologists also reported tuber burden and any other notable brain abnormalities that 

would be grounds for exclusion; 94% of the TACERN sample with MRI data (n=115) 

had cortical tubers.   
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Data analysis plan: 

1. Compare TACERN infants’ head circumferences to WHO’s healthy infants’ head 

circumferences in centimeters. 

2. Determine an average head circumference z-score for each subject that spans the 

first two years of life. Then determine the overall average of the TACERN sample 

using these individual averages.  

3. Examine the relationship between TACERN infants’ head circumference z-score 

and epilepsy severity, based on the number of seizure types, the type each infant 

has, and mini E-Chess score using two tailed t-tests. 

4. Investigate the relationship between age (6, 12, and 24 months) and head 

circumference z-score in TACERN infants using two tailed t-tests. Then analyze 

head circumference based on having epilepsy or not, by age using two tailed t-

tests. 

5. Assess whether or not the onset of seizures increases head circumference at any 

age of seizure onset by comparing the last head circumference measurement 

before seizures started and the first head circumference measurement after 

seizures started with a two tailed t-test.  

6. Analyze the relationship between head circumference and brain volume using 

MRI data and Pearson’s correlational coefficient, r; and determine the distribution 

of different tissue types in relation to total brain volume. 
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Results: 

Average head circumference of all TACERN infants is 1 standard deviation above 

the typically developing population  

 To examine the differences between the TACERN sample and WHO population, 

we used the t-score formula and distribution tables, which revealed there were significant 

differences between the two, at 6, 12, and 24 months of age (Figure 1). We used 

centimeters to better represent the differences, because the WHO population would 

always represent a z-score of zero. 

In order to determine the overall average standardized head circumference z-score 

of all TACERN infants, we first calculated individual averages that spanned the first two 

years of life for each participant. Then we took an average of all participants, which was 

determine to be 0.97 (where the WHO data would have a z-score of 0). This shows that 

head circumferences in TSC are about 1 standard deviation above the normal population, 

as seen in Figure 2A. The average head circumference in centimeters of TACERN 

participants was 43.41 cm. There were no significant sex differences when assessing head 

size by z-score; but as expected based on normal growth standards, male infants had 

overall large head circumferences in centimeters than females. There was a slight 

increase in head circumference z-score with age, which could be due to measurement 

errors or an atypical change in head circumference z-score over time. For very young 

children, measurement errors cause larger deviations due to smaller standard deviations, 

which is important because if errors in head circumference measurements were made, 

they would be more apparent at a young age, rather than an older age, such that there 

would appear to be an increase in z-score overtime. 



	 14 

In order to determine if the increase in head circumference is relative to body size, 

we compared head circumference and height. We did this, because we were interested in 

whether this potential biomarker of overgrowth was localized to the brain or if it occurred 

throughout the body, as represented by height. Head circumference was positively 

correlated to height in this sample; meaning, head size is proportional to the height of the 

infants in TACERN study (Figure 2B). Yet, head circumference of these infants is still 

above average based on age and gender (Figure 2A). This suggests that overgrowth was 

contained to the brain. To further support this we created a histogram (not shown) of 

TACERN infants’ height, and it was a normal distribution with no skewing above or 

below typical heights based on age and sex, suggesting that there were no extreme 

heights in the TACERN sample. 

Epilepsy severity of TACERN infants 

Of our 121 TACERN participants, 94 had seizures. We used the mini E-Chess 

score as described in the methods to determine severity of epilepsy within the group. 

Those who had one seizure type had an average mini E-chess score of 3.29, while those 

with two seizure types had an average mini E-chess score of 4.57. Our participants had an 

average mini E-chess of 3.85, and 54 of the 94 participants with epilepsy were above this 

average. Overall, we had a wide range of epilepsy severity, but also a large representation 

of participants with severe epilepsy. There were more TACERN individuals with 

epilepsy than without; for example, only had 9 of 59 total females did not have epilepsy 

and only 18 of the total 62 males did not have epilepsy. In addition to mini E-chess, we 

decided to use number of seizure type as a variable in our statistical analysis because this 

variable allowed similarly sized groups to make our results reliable, more than using 
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seizure type. Additionally, because mini E-Chess score was varied between all 

participants, using the number of seizure types created comparison groups that were 

unified by a single variable. 

Number of seizure types is proportional to degree of increase in head circumference 

of TACERN infants   

 In order to determine if TACERN individuals with any seizure types had larger 

head circumference z-scores than those who did not have seizures at all, a two tailed t-test 

was used and revealed those with epilepsy were significantly larger than those without 

epilepsy (Figure 3). The average z-score for TACERN participants who did not have 

seizures across all ages was 0.667, therefore, even without epilepsy, head circumference 

is larger in infants with TSC than in healthy infants. TACERN participants with any 

seizures across all ages had an average head circumference z-score of 1.08. However, 

when assessed by seizure type, there was no significant difference in mean head 

circumference z-score for those with only infantile spasms (n=15) versus no seizures 

(n=26), only focal seizures (n=12) versus no seizures (n=26), or only a different seizure 

type (n=1) type versus no seizures (n=26). 67 infants were excluded from this portion of 

the analysis as they had more than one seizure type. This trend suggests that no one type 

of seizure causes the increased head circumference, but the presence of seizures in 

general accounts for the change. Conversely, the lack of significant differences may be 

due to the small sample size of participants having only one seizure type. Since there 

were no significant differences between any one seizure type and head circumference, we 

investigated the role of number of seizure types in in head circumference. As portrayed in 

Figure 4, those with two or more types of seizures had a significantly larger head 
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circumference then those who did not have any seizures, as determined by a two tailed t-

test. This result suggests that having two or more types of seizures, a more severe seizure 

phenotype, is associated with a significantly larger head circumference. 

To determine if the age of seizure onset had an effect on head circumference, we 

examined head circumference z-score by age of seizure onset by using a two tailed t-test, 

and found no correlation. Yet, the start of seizures did have an effect on head 

circumference z-score irrespective of age; head circumference z-score increased from pre 

seizure onset to post seizure onset (Figure 6A). This difference was conserved in those 

who only had one type of seizure, but not in those who had two or more types of seizures 

(Figure 6A). Instead of using age in this analysis, the last head circumference 

measurement when the infant did not have seizures was used as the pre seizure 

measurement, which was compared to the first head circumference measurement once 

seizures started, or the post seizure measurement. We also determined that TACERN 

infants without epilepsy had a significantly different z-score from their first measurement 

to their last, and as noted above, typically developing infants rarely change z-score over 

time (Figure 6B); this suggests that abnormal growth is occurring in the brains of infants 

who have TSC even without having seizures. 

These results could be because those with 2 types of seizures had a bigger head 

circumference from an earlier age, while those with 1 seizure type have more abnormal 

head growth only after they develop seizures. This hypothesis is supported by the fact 

that those with 2 or more types have a significantly larger head circumference than those 

without epilepsy at 6 months of age, but those with only one type of seizures was not 

significantly different at 6 months of age. Overall, this data suggests that having seizures 
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could somehow change the brain and its growth trajectory, beyond the change in growth 

that is accompanied by having just TSC. Lastly, when head circumference was assessed 

by pre and post seizure onset and by individual seizure type, the post onset z-score 

increase was seen in only those who have infantile spasms (data not shown). As noted 

above, z-score should not change over time for head circumference; therefore, we are 

again seeing an abnormal growth rate. 

Data analysis by age reveals 6 months of age may be a critical period in growth 

After analyzing the sample as a whole, irrespective to age, we speculated as to 

whether there was a time point at which these differences appeared. This led us to 

analyze the data by age. Since the TACERN study was longitudinal in design, we were 

able to compare the same participants at 6, 12, and 24 months. We determined that head 

circumference was consistently and significantly above the WHO’s mean at 6, 12, and 24 

months of age when assessing all TACERN participants, with no sex differences in z-

score at any age (Figure 1 and 5).  

In order to determine other factors that may contribute to increased head 

circumference, we analyzed the data based on age and seizure status (whether or not the 

infant had seizures at any time). This analysis revealed that at 6 months of age those who 

had seizures had a significantly larger head circumference z-score than TACERN 

participants who did not have seizures (Figure 5). However, this difference was not 

statistically-significant at 12 or 24 months of age; yet, there were still an apparent 

differences (Figure 5). As seen in Figures 1 and 5, as a population, TACERN participants 

have an increased head circumference consistently through their first two years of life, 

thus the lack of significant differences between those with and without epilepsy at 12 and 
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24 months of age may be due to a small sample size. At 12 months, only 21 infants did 

not have seizures (average z-score= 0.667), while 82 infants did have seizures (average z-

score= 1.22). At 24 months, only 19 infants did not have seizures (average z-score= 

0.871), while 64 did have seizures (average z-score= 1.15). The number of infants was 

slightly different at each age, because some infants were seen too far before or after the 

age of interest. Moreover, at 12 and 24 months (as well as 6 months), by using the t-score 

formula and a two tailed t-distribution, the TACERN population was significantly 

different from the WHO data.  

 Since we determined that number of seizure types influences head size of 

TACERN participants, we next analyzed the data by age and number of seizure types 

using a two tailed t-test to see if there was an age affected the increase in head 

circumference. Again, we observed that the only significant difference was between those 

without epilepsy and those with 2 or more types of seizures, but now we determined this 

difference occurs only at 6 months of age (Figure 7). All of these results together suggest 

that if an infant with TSC has 2 or more types of seizures, there are brain size differences 

such that head circumference is increased early in the child’s life.  

To further characterize the relationship between head circumference and epilepsy 

phenotype, we ran a series of two tailed t-tests, which detected some interesting patterns 

of significant differences in head circumference, by age, number (0, 1, 2 or more) of the 

seizure types and the type of seizure occurring. At 6 months of age, those who had 

infantile spasms and focal seizures had significantly larger head circumferences than 

those who did not have seizures and those who only had infantile spasms (Table 3). At 12 

months of age, those who had infantile spasms and focal seizures had significantly larger 
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head circumferences than those who did not have seizures (Table 3). Additionally at 12 

months, those who had infantile spasms, focal seizures, and at least one other type of 

seizure had significantly larger head circumferences than those who had just infantile 

spasms and those who just had focal seizures (Table 3). At 24 months, those who had 

infantile spasms and one other seizure type had significantly larger head circumferences 

than those who just had infantile spasms (Table 3). From this data, it appears that at any 

age, having more than one seizure type (regardless of how often seizures occur) causes a 

significant increase in head circumference z-score. Moreover, we know that infantile 

spasms are associated with worse neurodevelopmental outcomes (Chu-Shore et al., 2010) 

and from this data; we can see that in every significant difference noted above, the 

children had infantile spasms.  Thus having infantile spasms and at least one other seizure 

type may be considered the most severe epilepsy, as represented by the greatest increase 

in head circumference. 

Brain measurements based on MRI data reveal similarities between TACERN 

participants and typically developing population 

 In order to determine if there were obvious physiological differences that could 

account for the increase in head circumference and to determine if head circumference 

was an accurate measurement of brain size, we analyzed the MRIs of TACERN 

participants. Brain volumes calculated from MRI data showed a similar distribution of 

volumes across tissue types within the TACERN sample. Approximately 58% (of total 

brain volume) was cortical grey matter, 3% was subcortical grey matter, 22% was white 

matter, 3% was ventricular systems, and 14% was extra-cerebral spinal fluid (CSF) for all 

subjects in this cohort, with or without epilepsy. This pattern of volumes of tissue types 
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among our subjects is important to note, as the trend suggests that larger head 

circumferences are not because of individual volumetric differences of one tissue type in 

the brain, hydrocephalus, or any other acute abnormality, but rather an overall large 

brain. Moreover, in the volumetric analysis of these MRIs, tubers were included in the 

percentage of volume of tissue type they were found within; for example, if a tuber was 

in the white matter, it added to the total white matter volume. Thus, tubers do not appear 

to change the distribution of tissue volume in the brains of those with TSC. Any 

participant with an acute abnormality, such as hydrocephaly, was excluded from further 

analysis. Additionally, because volumetric measures were positively correlated to head 

circumference, we can conclude that this 1 standard deviation increase in head 

circumference is relative compared to body size (Figure 8).  

To determine if the general trend of distribution of volume of each tissue type was 

similar to the typically developing population, we compared the percentage that each 

tissue type occupied between the two populations. The trend that the TACERN 

participants followed was similar to that of the typically developing population, therefore 

this suggests that large head size is not being caused by a structural difference induced by 

TSC (for example, the presence of cortical tubers). For example, the typical population 

that has a 52% of grey matter (Luders et al., 2002), while TACERN sample has 58% grey 

matter. We cannot say that there is no significant difference here, because Luders et al. 

(2002) did not report individual data points so we could not run two tailed t-tests between 

TACERN participants and the healthy controls. Therefore, while head circumference and 

consequently total brain volume was increased in the TACERN sample, it is not because 

any one tissue type is significantly increased. 
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Intracranial cavity (ICC), or total brain volume including everything within the 

skull, was positively correlated to head circumference based on all TACERN 

participants’ brain MRIs (Figure 8A). This is important, as it suggests that head 

circumference was an accurate measure of brain volume, as shown previously. White 

matter and subcortical and cortical grey matter volumes were also positively correlated 

with head circumference (Figure 8B, 9C, and 9D respectively). Positive correlations 

between the tissue volumes and head circumference is as expected, because the amount 

of tissue should be proportional to head size. As expected, males had overall larger brain 

volumes than females, as predicted by larger body size (World Health Organization, 

2018). Lastly, larger head circumference was not due to increased CSF, as all individuals 

in this sample had normal CSF volumes as compared to the typically developing 

population (data not shown).  

Review and results of data analysis plan: 

1. TACERN infants’ head circumferences were about 1 standard deviation above the 

WHO’s healthy infants’ head circumferences. 

2. The average head circumference z-score for all subjects, spanning each 

participants' first two years of life (individual average of each head circumference 

measurement) was 0.97. 

3. TACERN infants’ head circumference z-score was proportional to epilepsy 

severity, based on the number of seizure types each infant has. With no seizures, 

TACERN infants had an average z-score of 0.57, with one seizure type the 

average was 0.881, and with two or more types of seizures, the average was1.31 
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4. At 6 months of age, TACERN infants without epilepsy had an average z-score of 

0.482, while those who did have seizures was 1.12. At 12 months of age, 

TACERN infants without epilepsy had an average z-score of 0.667, while those 

who did have seizures was 1.22. At 24 months of age, TACERN infants without 

epilepsy had an average z-score of 0.871, while those who did have seizures was 

1.15. 

5. The start of seizures increases head circumference at any age of seizure onset 

when TACERN infants had only one type of seizures, but not when TACERN 

infants had two or more types of seizures. 

6. Using two tailed t-tests, it was determined that infantile spasms, more than focal 

seizures or other seizure types, increased head circumference the most. 

7. Head circumference and brain volume were positively correlated, as determined 

by MRI data. 

Discussion 

Most TACERN participants have an increased head circumference, but not 

macrocephaly 

When originally designing this project, we hypothesized the majority of the TACERN 

infants would meet clinical criteria for macrocephaly, as the literature intermittently 

reported that macrocephaly was a symptom of TSC and because of the presence of tubers 

and seizures in individuals with TSC; however this was not the case. As mentioned in the 

introduction, macrocephaly is defined as a head circumference that is two or more 

standard deviations above the mean, as reported by the WHO, (Lainhart et al., 2006), and 

the TACERN infants on average had an increase in head circumference z-score of one 
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standard deviation. Yet, we did have a rate of 19.8% infants who met criteria for 

macrocephaly, which is still elevated from the 3% rate in the typical population and a 

15.7% rate in those with autism (Vignoli et al., 2015). This supported our hypothesis that 

the rate of macrocephaly is elevated in the TSC population. Most of our subjects had an 

increased head circumference but not increased enough to meet criteria for macrocephaly. 

Thus, we believe that an increased head circumference of approximately 1 standard 

deviation above the WHO mean, is a more accurate descriptor of head circumference 

differences in those with TSC. Additionally, it has been previously demonstrated that 

head circumference is an accurate predictor of brain volume, especially in young 

children; thus, differences in head circumference represents differences in brain volume 

(Bartholomeusz et al., 2002). Furthermore, since head circumference was positively 

correlated to brain volume in the TACERN sample, our analysis of head circumference is 

likely an accurate measurement of brain size. Thus, overgrowth of head circumference 

represents over growth in the brain. 

Epilepsy severity is proportional to the increase in head circumference in TACERN 

participants 

Through our analysis of epilepsy severity, we observed a number of trends that 

related epilepsy severity to head circumference. First, since we demonstrated that overall, 

TSC carries a risk of an increased head circumference, because we found that as a whole, 

the average head circumference z-score of the TACERN population was 0.97 (Figure 

2A). The average head circumference z-score for TACERN participants without epilepsy 

was 0.57, while the average head circumference z-score for TACERN participants with 

epilepsy was 1.08; this difference was statistically significant (Figure 3). This supported 
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our hypothesis that those TACERN infants with epilepsy had a larger head circumference 

than those TACERN infants without epilepsy. We also determined that those with TSC 

without epilepsy increased z-score of head circumference over the course of their first 

two years, which suggests that even without epilepsy, TSC is associated with abnormal 

head growth as head circumference percentile is typically stable over the lifetime (Figure 

6B).  

The abnormal change in head circumference z-score in those without epilepsy 

could potentially be because the brains of those with TSC without epilepsy, still have 

abnormal cellular growth that leads to larger cells, cellular migration, and subtle 

microscopic differences and therefore they have overall larger brains. An example of 

these microscopic differences is that, some cells do not migrate properly, thus some 

portions of the brain are subtlety structurally different from a healthy brain. For those 

who do not have tubers, there are likely still unhealthy cells within the brain. This is 

because those without tubers still have the mutation of one of the TSC genes that causes 

TSC and also cause the unhealthy cells, just likely at lower concentrations such that no 

visible tuber is formed. To confirm these hypotheses, in the future it would be helpful if 

more post-mortem studies were conducted to determine if these discrete cellular 

abnormalities are present in the brains of those with TSC without epilepsy and or without 

tubers, and to determine how exactly they change the brain. Crino et al. (2010) reviewed 

studies that have noted some microscopic differences, as mentioned above, in those TSC 

that were not visible on MRI, but were identified post mortem. This is important, because 

if those without tubers, still have an increased head circumference, potentially caused by 

these abnormal cells, then head circumference could be used as a diagnostic tool of TSC, 
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for individuals who do not have tubers which is a common way of diagnosing TSC. 

While each change is so minor, many such changes could constitute an increased head 

circumference. 

Second, we determined that those with the most severe epilepsy, as characterized 

by having two or more types of seizures, had the largest head circumferences in the 

sample. This too supported our hypothesis that epilepsy severity would be correlated to 

head circumference. We determined that those with two or more types of seizures had an 

average head circumference z-score of 1.31, while those who had only one type of 

seizures had an average head circumference of 0.88 (Figure 4). At 6 months of age, those 

with two or more types of seizures had a significantly larger head circumference than 

those without epilepsy, but this difference was not statistically significant at 12 or 24 

months (Figure 7). Because there was no statistical difference in those with and without 

epilepsy at 12 to 24 months, this suggests that 6 months may be a critical point in 

development for those with severe epilepsy, such that head growth rate begins to slow 

down, as head circumference was consistently high at 6,12, and 24 months for those with 

epilepsy. Additionally, there were no statistically significant differences in head 

circumference at any age between those with 1 type of seizure and those without epilepsy 

(Figure 7).  

Third, those with one type of seizure had a significant head circumference 

increase after their seizures began, but this was not seen in those with two or more types 

of seizures (Figure 6A). For infants with 1 seizure type, it appears that their heads grow at 

a similar rate to those without epilepsy until seizures start. For example, one participant 

with 1 seizure type had a consistent head circumference z-score of 0.66 before seizures 
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began, then after seizures began, head circumference z-score increased to 1.42. This 

participant represented the trend nicely, as there was a slight increase in head 

circumference, similar to those without epilepsy, before the seizures began. After seizures 

began, we observed a large increase in head circumference z-score, which may represent 

an anatomical change in the brain that could be causing the seizures. These trends are 

outlined below in Table 2.   

Table 2: Head Circumference z-score by Seizure Status 

Age (months) Average head circumference z-

score with epilepsy 

Average head circumference z-

score without epilepsy 

6  1.12 0.482 

12 1.22 0.667 

24  1.15 0.871 

 

In every result of statistical analysis that was significantly different based on the 

type of seizures, infantile spasms were occurred in those who had larger head 

circumferences. This is important because we know that infantile spasms in particular are 

detrimental to infants’ development, leading to refractory epilepsy and epileptic 

encephalopathy (Chu-Shore et al., 2010). This suggests that infantile spasms affect brain 

growth in a way that focal spasms or other seizure types do not, as there was only a 

significant post seizure onset z-score increase in those with infantile spasms alone, but 

not any other one seizure type. Another possibility is that infantile spasms typically have 

an earlier onset than focal seizures, so the change in head circumference may be greater 

from a younger age. If we can reduce the rate of refractory epilepsy, we also could be 
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reducing the amount of resulting cognitive impairments, and improving the outcomes of 

infants with TSC. 

We conclude that increased head circumference could be used as a biomarker in 

TSC in one of three ways. First, having a head circumference that is slightly above 

average from a young age, could suggest that the infant may have TSC, if it has not 

already been diagnosed. A TSC diagnosis can then be confirmed with a genetic test. 

Second, if the increase in head circumference is slight, between half a standard deviation 

and 1 standard deviation above the mean, there is also a risk that this child may have mild 

epilepsy (1 seizure type). Third, for those who have an increased head circumference of 

about 1 standard deviation or above the mean, there is a risk of severe epilepsy (2 or more 

types of seizures).  This biomarker could be further tested by performing regular 

electroencephalograms on all infants diagnosed with TSC in order to diagnose and track 

seizures, in addition to the yearly MRIs most individuals with TSC have to track tubers. 

If our conclusions were supported in the future, after additional research is conducted, 

only those who carry a risk of seizures would need to continue those diagnostic tests. 

Additionally, if the risk of severe epilepsy is supported then, perhaps these children can 

be proactively treated with an anti-epileptic in order to reduce the chance of refractory 

epilepsy as a preventative measure. As mentioned above, those with TSC have an 

approximate 50% chance of developing autism, and by having early onset severe 

epilepsy, individuals risk of developing increases, because the seizures damage healthy 

brain tissue. Thus, if we are able to control epilepsy, such that it does not damage healthy 

tissue, we could reduce the rate of autism in the TSC population. We could further this 

effort, by not only preventively treating epilepsy, but perhaps we could preventively treat 
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autism (i.e.: with applied behavioral analysis therapy) to further decrease the rate of 

autism in TSC. 



	 29 

References:  
Bartholomeusz HH, Courchesne E, Karns CM. (2002). Relationship between head 

circumference and brain volume in healthy normal toddlers, children, and adults. 

Neuropediatrics. 2002;33(5):239-241.  

Besag, F. (2017). Epilepsy in patients with autism: Links, risks and treatment 

challenges. Neuropsychiatric Disease and Treatment, Volume 14, 1-10.  

Center for Disease Control and Prevention (CDC). Data & Statistics. (2018). Available 

from http://www.cdc.gov/ncbddd/autism/data.html 

Chu-Shore, C. J., Major, P., Camposano, S., Muzykewicz, D., & Thiele, E. A.  

 (2010). The natural history of epilepsy in tuberous sclerosis complex.  

 Epilepsia, 51(7), 1236–1241.  

Crino, P.B., Mehta, R., Vinters, H.V. (2010). Pathogenesis of TSC in the Brain. In: 

Kwiatkowski, D. J., Whittemore, V. H., & Thiele, E. A. Tuberous sclerosis 

complex: Genes, clinical features, and therapeutics. Weinheim, Germany: Wiley-

Blackwell. p.176-179 

Curatolo, P., Moavero, R., Roberto, D., & Graziola, F. (2015).  

 Genotype/Phenotype Correlations in Tuberous Sclerosis Complex.  

 Seminars in Pediatric Neurology, 22(4), 259-273.  

Davis, P. E., Peters, J. M., Krueger, D. A., & Sahin, M. (2015). Tuberous  

 Sclerosis: A New Frontier in Targeted Treatment of Autism.  

 Neurotherapeutics, 12(3), 572-583.  

Davis, P. E., Filip-Dhima, R., Sideridis, G., Peters, J. M., Au, K. S., Northrup, H., Bebin, 

E.M., Wu, J.Y., Krueger, D., Sahin, M. (2017). Presentation and Diagnosis of 

Tuberous Sclerosis Complex in Infants. Pediatrics, 140(6).  



	 30 

Doherty C, Goh S, Poussaint TY, Erdag N, Thiele EA. 2005. Prognostic Significance of 

Tuber Count and Location in Tuberous Sclerosis Complex. Journal of Child 

Neurology 20:837–841. 

Humphrey, A., Ploubidis, G. B., Yates, J. R., Steinberg, T., & Bolton, P. F. (2008). The 

Early Childhood Epilepsy Severity Scale (E-Chess). Epilepsy Research,79(2-3), 

139-145.  

Lainhart, J. E., Bigler, E. D., Bocian, M., Coon, H., Dinh, E., Dawson, G., Deutsch 

CK, Dunn M, Estes A, Tager-Flusberg H, Folstein S, Hepburn S, Hyman 

S, McMahon W, Minshew N, Munson J, Osann K, Ozonoff S, Rodier P, Rogers 

S, Sigman M, Spence MA, Stodgell CJ,  Volkmar, F. (2006). Head Circumference 

and Height in Autism: A Study by the Collaborative Program of Excellence in 

Autism. American Journal of Medical Genetics. Part A, 140(21), 2257–2274.  

Luders, E., Steinmetz, H., & Jancke, L. (2002). Brain size and grey matter volume in the 

healthy human brain. NeuroReport, 13(17), 2371-2374.  

Sacco, R., Gabriele, S., & Persico, A. M. (2015). Head circumference and brain  

 size in autism spectrum disorder: A systematic review and meta-analysis.  

 Psychiatry Research: Neuroimaging, 234(2), 239-251.  

Shields, D. (2018). Infantile Spasms. Available from http://www.childneurology 

foundation.org/disorders/infantile-spasms/ 

Tomas-Fernandez, X., & Warfield, S. K. (2015). A Model of Population and Subject 

(MOPS) Intensities with Application to Multiple Sclerosis Lesion 

Segmentation. IEEE Transactions on Medical Imaging, 34(6), 1349–1361.  

https://www.ncbi.nlm.nih.gov/pubmed/?term=Deutsch CK%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Deutsch CK%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Dunn M%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Estes A%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tager-Flusberg H%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Folstein S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hepburn S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hyman S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hyman S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=McMahon W%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Minshew N%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Munson J%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Osann K%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ozonoff S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rodier P%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rogers S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Rogers S%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sigman M%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Spence MA%5BAuthor%5D&cauthor=true&cauthor_uid=17022081
https://www.ncbi.nlm.nih.gov/pubmed/?term=Stodgell CJ%5BAuthor%5D&cauthor=true&cauthor_uid=17022081


	 31 

Vignoli, A., Briola, F. L., Peron, A., Turner, K., Vannicola, C., Saccani, M.,  

 Canevini, M. P. (2015). Autism spectrum disorder in tuberous sclerosis  

 complex: Searching for risk markers. Orphanet Journal of Rare Diseases  

 Orphanet J Rare Dis, 10(1).  

WHO Child Growth Standards: Methods and development. (2014, January 15). Available 

from http://www.who.int/childgrowth/standards/second_set/technical_report 

_2/en/ 

World Health Organization Head circumference-for-age. (2018). Available from 

http://www.who.int/childgrowth/standards/hc_for_age/en/ 

	

  

http://www.who.int/childgrowth/standards/hc_for_age/en/


	 32 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Average head circumference of TACERN participants and WHO reveals 
differences between typically developing children and children with TSC. By using the t-
score formula and a two tailed t-distribution, significant differences at 6,12, and 24 
months were detected. Centimeters were used in this figure, because the WHO population 
would always represent a z-score of 0, thus centimeters makes the difference easier to 
visualize. *** Indicates p<0.001 
  

38	

40	

42	

44	

46	

48	

50	

TACERN	 WHO	 TACERN	 WHO	 TACERN	 WHO	

6	 12	 24	

Av
er
ag
e	
H
ea
d	
Ci
rc
um

fe
re
nc
e	
(c
m
)	

Age	(months)	and	Participant	Grouping	

***	

***	
***	



	 33 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Above average head circumference z-score of all TACERN participants is 
proportional to their height. A. The average head circumference z-score of all TACERN 
participants was 0.97, with no significant sex differences between TACERN participants 
(p=0.298, two tailed t-test, when α=0.05). B. A positive correlation between head 
circumference and height (Pearson’s r= 0.867; p=2.96e-183, two tailed t-test, when 
α=0.05), suggests that the larger head circumference was relative to body size. Average 
head circumference of TACERN participants was still above the expected average based 
on age and sex. 
  

0.75	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

Males	 Females	

Av
er
ag
e	
H
ea
d	
Ci
rc
um

fe
re
nc
e	
z-
co
re
	A 



	 34 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. TACERN infants with epilepsy have a significantly larger head circumference 
z-scores than TACERN infants without epilepsy. Those who had any seizure type (red) 
had a significantly larger z-score than those who did not have seizures (blue) (p=0.0487, 
tailed t-test, when α =0.05). The average head circumference z-score for those with 
epilepsy was 1.08, while the average for those without epilepsy was 0.571. There was no 
significant difference in head circumference z- score between those TACERN 
participants without epilepsy compared to TACERN infants with any one type of seizure 
(i.e. infantile spasms). *Indicates p<0.05 
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Figure 4. Infants with two seizure types have a significantly larger head circumference z-
score. As previously mentioned, individuals with epilepsy had larger head circumference 
z-scores, however when analyzed by the number of seizure types, only those with two or 
more seizure types had significantly larger head circumference z-scores than those with 
epilepsy. Those with no seizures had an average head circumference z-score of 0.571, 
one seizure type had a z-score of 0.881 and with two types of seizures, and the average z-
score was 1.31. The average z-score of all participants with at least one type of seizure 
was 0.960. * Indicates p<0.05.  
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Figure 5. Analysis of head circumference z-score at 6, 12, and 24 months of all 
TACERN participants, by epilepsy status, reveals an increased head circumference that is 
consistent throughout infancy and larger for those with epilepsy. The closest 
measurement to each of the time points was used instead of average z-score across the 
first two years of life, as in Figure 2A; most infants were not seen at exactly 6, 12, or 24 
months, therefore the closest visit to each age was used. At 6 months of age, head 
circumference z-score significantly differed between those who did and did not have 
seizures The average head circumference z-score for those who did have seizures at 6 
months was 1.12, the average for those who did not was 0.482. At 12 months of age, head 
circumference z-score was not significantly differed between those who did and did not 
have seizures (p=0.059, two tailed t-test, when α =0.05). The average head 
circumference z-score for those who did have seizures at 12 months was 1.22, the 
average for those who did not was 0.667. At 24 months of age, head circumference z-
score was not significantly differed between those who did and did not have seizures 
(p=0.342, two tailed t-test, when α =0.05). The average head circumference z-score for 
those who did have seizures at 24 months was 1.15, the average for those who did not 
was 0.871. Although there was no statistically significant difference between those with 
and without epilepsy at 12 and 24 months, there are consistent increases in the mean z-
score from 6 to 24 months.. *Indicates p<0.05 
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Figure 6. Difference in pre and post seizure onset head circumference z-score for 
TACERN infants with one seizure type but not with two seizure types; and increase in z-
score for TACERN infants without epilepsy overtime. A. For TACERN participants with 
one seizure type, their head circumference z-score was significantly different from pre to 
post seizure onset; this significant difference was conserved when tested with any 
participant who had any number of seizure types. However, for TACERN participants 
with two or more seizure types, there was no significant difference in pre and post seizure 
onset head circumference z-score (p=0.229, two tailed t-test, when α =0.05). TACERN 
participants who do not have epilepsy had a significantly larger head circumference z-
score from their first measurement to their last measurement. This suggests that even 
without epilepsy, those with TSC have larger heads than the typically developing 
population, and infants with TSC change percentile of head circumference, unlike the 
typically developing population. *Indicates p<0.05. ***Indicates p<0.001.  
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Figure 7. Difference in head circumference z-score between infants with two or more 
seizure types and infants without epilepsy is localized to 6 months of age. As seen in 
Figure 5, there were differences in head circumference between infants with and without 
epilepsy at 6 months of age, however that difference was driven by infants with 2 or more 
seizure types as shown here, this is the only significant difference. When analyzing the 
data in this manner, each subcategory had a fairly small sample size, thus other 
relationships may exist that were not present in our sample. * Indicates p<0.05  
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Table 3: Two tailed t-tests of head circumference z-score by seizure status 

✚Represents a significant difference 
IS= infantile spasms, FS= focal spasms, SZ= seizures, All= IS, FS, and OS, OS=other 
seizure type; N/A represents too small of a sample size to run a two tailed t-test; Values 
represent p-values when α =0.05 using a two tailed t-test 
 
  

t-test 6 Months 12 Months 24 Months 
IS and FS vs no SZ 0.0078✚ 0.023✚ 0.492 
IS and FS vs IS 0.0076✚ 0.174 0.806 
IS vs all 0.720 0.024✚ 0.803 
IS and OS vs no SZ N/A 0.278 0.053 
IS and OS vs IS N/A N/A 0.035✚ 
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Figure 8. Brain volumes of all participants were correlated to average head 
circumference, suggesting head circumference is an accurate measure of brain size. This 
data includes all TACERN participants- with and without epilepsy. A. Total brain volume 
(ICC, intracranial cavity) was positively correlated with head circumference (r=0.919, 
p=8.74e-131, two tailed t-test, when α =0.05). This suggests that larger head 
circumference was not due to measurement errors or hair volume. Additionally, head 
circumference is an effective measure of brain size. B. White matter (WM) volume was 
positively correlated and significantly related to head circumference (r=0.884 and 
p=6.91e-107, two tailed t-test, when α =0.05). C. Subcortical grey matter (GM) volume 
was positively correlated to head circumference (r=-0.841, p=7.14e-87, two tailed t-test, 
when α =0.05). D. Cortical grey matter volume was also positively correlated to head 
circumference (r=0.847, p=2.47e-89, two tailed t-test, when α =0.05). The linear fit of 
these graphs were similar but slightly better than a cubic fit, and a cubic relationship 
between volume (mm3) and head circumference (cm1) as previously demonstrated in the 
literature.  
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