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ABSTRACT. Given a certain technology or procedure for diagnostic testing, different 

cutoff points produce different sensitivity and specificity rates. The cutoff point that 

generates highest sensitivity and specificity establishes the Criterion Standard Test 

(otherwise known as the Gold Standard Test). If, subject to good reason, a new 

testing technology or procedure emerges, the optimum cutoff point associated with it 

may generate higher sensitivity and specificity and thus a new improved Criterion 

Standard Test. Various cutoff selection methodologies have been proposed, all based 

on Euclidean geometry, involving the so-called Receiver Operating Characteristic 

(ROC) curve. Our purpose in this paper is to recommend a new selection method- 

ology based on the P-Value associated with the well-known Pearson’s chi-squared 

test (χ2) – the conventional test utilized when testing for dependence between state 

of nature (disease present or not present) and evidence (test positive or negative  

measures). Using a hypothetical numerical example, we demonstrate that the cutoff 

point associated with the lowest P-Value of the Pearson’s chi-squared test is the one 

that maximizes sensitivity and specificity, or overall accuracy, thus establishing the 

Criterion Standard Test. Although the best geometric method (sums of squares) and 

the proposed method are equally effective in selecting the optimum cutoff point, only 

the proposed new procedure selects based on statistical significance. Additionally, 

we propose a simple theoretical benefits / costs linear setting to discuss the impor- 

tance of net benefits associated with testing accuracy and reference harmful as well 

as beneficial testing cases found in various literature sources.  
 

Keywords: diagnostic testing; criterion standard test; statistics; receiver operating  

                   characteristic; FDA; net economic benefits 
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1. Introduction 
 

Epidemiological studies, genetic theory, clinical studies, and testing for effi- 

cacy of new medicine and medical devices or procedures, enable researchers 

and regulatory authorities to estimate probabilities in their efforts to deal  

with the diagnosis and cure of a disease or, alternatively stated, to minimize 

false-positives (F+) and false-negatives (F-) that impose costs on society 

including poor medical outcomes, direct costs associated with less efficient 

care, inappropriate use of therapies and diagnostic tests, lost patient  

productivity (e.g., increased absenteeism), and administrative burden.  

     For example, an epidemiological study establishes state of nature proba- 

bilities (or prior probabilities such as the prevalence of a disease in a human 

population) against which a researcher may test the efficacy of a new medi- 

cine or the sensitivity of new diagnostic test or medical device / procedure. 

Similarly, after genetic theory (e.g., applied to autosomal recessive diseases) 

establishes prior probabilities, whether an individual carries a disease may be 

tested subject to optimal cutoff points (cutoff points that maximize test 

accuracy). Also, clinical studies enable researchers to test their hypotheses 

(e.g., how likely it is that, given symptoms, a patient carries a disease) based 

on prior probabilities derived from literature and their clinical experience. 

Likewise, the U.S. Food and Drug Administration (FDA) requires that the 

safety of food and cosmetics, and the safety and efficacy of drugs and medical 

devices are tested and validated or demonstrated.1 

     Recent epidemiological studies have dealt with physicality of older women 

in Scotland (Yang et al., 2017), children with disorders (Katusic et al., 

2017), ageing (Lu et al., 2016), and immunology (Black at al., 2016) as well 

as mind-body therapy (Bower et al., 2016). 

     Additionally, clinical research efforts, facilitated by the FDA, have been 

producing safer, faster and more effective outcomes; most notably, see Zarin 

et al. (2016) on trial reporting, Schwartz et al. (2016) on new drug approval, 

Bourgeois et al. (2016) on intervention trials, Russek-Cohen et al. (2011) on 

diagnostic devices, and Ziegler et al. (2005) on radiology technologies. 

Undoubtedly, the research effort has been aided by the digital revolution 

which has greatly contributed to improved diagnostic accuracy and screen- 

ing; see, among many others, Willis et al. (2011), Albert (2009), Zhou et al. 

(2011), Zou et al. (2011), and Ballard-Barbash et al. (1997). 

     Moreover, genomic testing studies have been pushing the evolutionary 

frontier across the board; specifically, studies by Nair et al. (2016) on  

endometrial cancer, Stranneheim et al. (2016) on monogenic disorders, Van 
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Driest et al. (2016) on arrhythmia, Gonzaga-Jauregui et al. (2012) on general 

lessons associated with human genome sequencing in health and disease,  

Gepts (2014) on genetic and genomic approaches to plant domestication 

studies, and Manrai et al. (2016) on genetic misdiagnoses.  

     Many researches involved in such studies rely on the Bayesian Theorem 

to derive posterior probabilities based on prior probabilities. According to 

Copi et al. (2007), Thomas Bayes was “the first to use probability induc- 

tively and who established a mathematical basis for probability inference: a 

means of calculating, from the frequency with which an event has occurred 

in prior trials, the probability that it will occur in future trials.”2 

     Bayesian learning starts with some initial information about an event X 

which enables the researcher to estimate the probability of event X occurring; 

in turn, in the next period, if additional or better information becomes  

available a new probability is estimated (the posterior probability) given the 

probability estimated in the previous period (the prior probability) and so 

forth for any n periods. In every new period a new posterior probability is 

estimated which becomes the prior probability in the next period. Hence, 

since the posterior probability is based on more and / or better information, it 

contributes to more and / or better knowledge; it takes us closer to the truth 

but inductively so: the process generates a probable credible result but not a 

certain one. Flow Chart 1 sketches this process.3 

     When evaluating a diagnostic test or procedure, different cutoff points 

produce different sensitivity and specificity rates. The cutoff point that  

generates the highest sensitivity and specificity establishes the Criterion 

Standard Test (otherwise known as Gold Standard Test). Of course, if a new 

diagnostic test or procedure emerges, the optimum cutoff point associated 

with it may generate higher sensitivity and specificity and thus a new im- 

proved Criterion Standard Test. It is also likely that a new testing technology 

or procedure generates reduced accuracy in which case we revert to the  

previous Criterion Standard Test. 

     Various cutoff selection methodologies have been proposed, all based on 

Euclidean geometry, involving the so-called Receiver Operating Characteristic 

(ROC) curve. Our purpose in this paper is to recommend a new selection 

methodology based on the P-Value associated with the well-known Pearson’s 

chi-squared test (χ2) when testing for dependence between state of nature 

(disease present or not present) and evidence (test positive or negative  

measures). Using a numerical example, we shall attempt to demonstrate that 

the cutoff point associated with the lowest P-Value of the Pearson’s chi-

squared test is the one that maximizes sensitivity and specificity, or overall 

accuracy, thus establishing the Criterion Standard Test. 

     We proceed as follows: in Section 2, we review the existing cutoff 

methodologies. In Section 3, we offer a hypothetical numerical example that 
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involves diagnosing cancer with positron emission tomography (PET) and 

the measure it produces called standardized uptake value (SUV) – an indicator 

of how likely the part of the body contains cancerous cells. In Section 4, we 

take the opportunity to discuss some Criterion Standard Test applications 

found in the literature and we stress the importance of false-positives and 

false-negatives as costs to society in the discovery process for new 

diagnostic test / procedure and medicine. Finally, in Section 5 we summarize 

and conclude. Appendix 1 describes the Bayesian Theorem (statement, proof 

and examples) which may be skipped by readers familiar with it. All  

hypothetical data used in Section 3 is in Appendix 2. 
 

Flow Chart 1 Bayesian Learning  

(P = Probability, K = Knowledge, t = time ranging from 1 to n) 

 

 

2. Cutoff Methodologies 
 

Existing cutoff methodologies are eloquently described by Froud and Abel 

(2014) in conjunction with the well-known Receiver Operator Characteristic 

(ROC) curve which maps “Sensitivity” (vertical axis) vs. “1-Specificity” 

(horizontal axis).4 They propose a methodology for the identification of 
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optimal cutoff points which outperforms the Farrar method and the EMGO 

method. In their words, “to identify Minimally Important Change (MIC) 

thresholds on scales that measure a change in health status … we choose the 

point in ROC space that minimizes [QFA] … the sums of squares of 1-sens 

and 1-spec” where QFA = min {(1-Sensitivity)2 + (1-Specificity)2}. 

     Assuming that three possible points on the ROC are A, B, and C, Figure 1 

describes the Euclidean geometry associated with the Froud-Abel selection 

result (point A) relative to Farrar (point B) and EMGO (point C). Since the 

objective is to select the point on the ROC closest to (0,1), or closest to the 

northwest point, clearly the Froud-Abel method outperfoms the other two. 

(The circle, or the equidistant frontier , is centered around the top-left 

corner; the equidistant frontier passing through A is closer to the top-left 

corner relative to the frontiers that pass through B and C). For a different 

approcah on how to search for optimal cutoff points see Terluin et al. (2015).  
 

Figure 1 The Froud-Abel Method  

[Euclidean geometry associated with the Froud-Abel selection result  

(point A) relative to Farrar (point B) and EMGO (point C)] 

 

Alternatively, as we propose in this paper and show below by way of  

hypothetical example, the cutoff point that establishes the Criterion Standard 
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Test is the one that corresponds to the lowest P-Value of the Pearson’s chi-

squared test (χ2). More specifically, when testing for the existence of depen- 

dence between the state of nature variable (disease present or not present) 

and the hypothesis or evidence variable (test positive or negative measures) 

using the χ2 test, in most applications, we end up with many cutoff points 

that enable us to reject the zero hypothesis H0 (the state of nature variable 

and the hypothesis variable are independent) in favor of the al ternative 

hypothesis H1 (the state of nature variable and the hypothesis variable are not 

independent); hence, which one of the many cutoff points that generate  

statistically significant results should be selected? We propose that the cutoff 

point that generates the lowest P-Value ought to be considered as the Crite- 

rion Standard Test. In conventional research, the gold standard is reported 

void of statistical significance; as such, it is less useful in decision making 

involving screening and diagnostic testing or in the process of medicine 

discovery. The proposed methodology adds statistical significance to the 

process of establishing maximum accuracy (or a gold standard) thus making 

decisions more credible. Using a fictitious numerical example, we show 

below that the lowest P-Value of the χ2 test corresponds to the cutoff point 

identified by the Froud-Abel Method as well.  

 
3. Hypothetical Numerical Example 
 

Positron emission tomography (PET), among other applications, may be used 

to diagnose cancer. PET generates a standardized uptake value (SUV) which 

serves as an indicator of the likelihood of cancer. SUV is a positive number 

ranging from 0 upwards; the higher the SUV value the more likely it is that 

cancer is present. A value greater than 10 implies a high likelihood for  

aggressive disease. After SUV is measured the patients undergo a biopsy 

wherein a small piece of tissue from the suspected area is removed and 

examined histologically and/or genetically sequenced to inform a cancer  

diagnosis. Pathological verification along these lines gives rise to the so-

called gold standard.   

     In the table that appears in Appendix 2 we report hypothetical data for 

100 individuals: first column – identification of subjects (ID), second column 

– SUV scores, and third column – biopsy results for Cancer where 1 = present 

and 2 = not present. Figure 2 reports the sample probability distributions of 

SUV tested positive (top) and tested negative (bottom); it shows that higher 

SUV scores are more likely to be associated with cancer than otherwise and 

it clearly demonstrates the impact of cutoff point regarding false-positives 

and false-negatives: when the cutoff point is increased from the left double-

headed arrow to the right double-headed arrow, false-positives decrease and 

false-negatives increase.5 For “treatable” cancer, a test that generates a high 
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number of false-negatives is not a good test and undoubtedly more prob- 

lematic than a test that generates a high number of false-positives. False-

positives would cause psychological discomfort and unnecessary treatment, 

sometimes even surgery or chemotherapy, but, false-negatives, may delay 

treatment and could lead to loss of life. On the other hand, if the disease is 

incurable a false-negative diagnosis may not be that bad. Hence, at least for 

treatable diseases, quickly identifying optimum cutoff points is of paramount 

importance. 
 

Figure 2 The need for optimum cutoff point 

(P = Probability, SUV = Standardized Uptake Value)  

      
To discover the optimum cutoff point (or, the cutoff point that would give 

rise to the Criterion Standard Test), we proceeded as follows: based on the 

distribution of SUV scores, we constructed all possible 2-variable contingency 

tables per SUV value – as the one below for SUV = 10 – and, using the χ2 

test, we tested whether or not the state of nature variable and the test results 

variable are independent. (Details regarding such contingency tables may be 

found in Appendix 1.)  
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For 20 SUV discrete scores, Table 1 reports the following: SUV score and 

corresponding Sensitivity, Specificity, the Froud-Abel sums of squares (QFA) 

result, and the P-Value of each test based on the χ2. Figure 3 reports the 

corresponding ROC line. The results show that the optimum cutoff point is 

SUV = 8. This point is picked by the Froud-Abel method (lowest QFA) as 

well as by our proposed new method which relies on the χ2 test and the 

lowest P-Value associated with it. Although the two methodologies are 

equally effective in selecting the optimum cutoff point, only the proposed 

new procedure selects based on statistical significance: it ranks cutoff points 

according to the P-Value of the χ2 test and selects the one that corresponds to 

the lowest P-Value or highest possible level of statistical significance.   
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Noninvasive Prenatal Testing (A.K.A. cell-free DNA testing)  

Category LDT Characteristics 

LDT Name    
Noninvasive prenatal cell-free DNA testing (NIPT, or 

cfDNA)  

Description  
Blood test to identify traces of fetal chromosomes in  

maternal blood  

Purpose  To detect a range of fetal chromosomal abnormalities  

Target Population  
Pregnant women concerned about a fetal chromosomal 

abnormality  

   Alternatives 

Invasive testing, including amniocentesis and  

chorionic villi sampling; “quad testing” of multiple  

substances combined with ultrasound imaging 

LDT Problem 1  
Lack of clinical validation that tests detect and predict  

fetal abnormalities at an appropriate rate  

LDT Problem 2  
Many false-positive results when used in the general 

population  

Clinical Consequence  

Women with false-positive results may abort a  

normal pregnancy; women with false-negative  

results may deliver a child with an unanticipated  

genetic syndrome  

Potential Impact of FDA Oversight  
Assurance the test meets minimum performance  

standards; evaluation of manufacturer claims  

Cost Impact of Inaccuracy  Not estimated  
aSource: Food and Drug Administration (2016) – Office of Public Health Strategy and 

Analysis Office of the Commissioner, “The Public Health Evidence for FDA Oversight of 

Laboratory Developed Tests: 20 Case Studies,” November 16, 2015. 
 

But, tests are not all harmful. Lewis (2016) describes the immense benefit 

and the very low cost of an ingenious new diagnostic test for the Zika virus 

based on CRISPR/Cas9 gene-editing (a new approach in testing which relies 

on genome tinkering with demonstrated potential to edit DNA in cell lines 

and embryos, a methodology that has spurred international discussion about 

ethical, legal and social issues). In Lewis’ words,  
 

[s]cientists have developed a cheap, rapid, paper-based diagnostic 

test for Zika virus. … [which] takes only two to three hours … 

Using CRISPR/Cas9 gene-editing, the test is capable of dis- 

tinguishing between different strains of Zika .... The Cas9 enzyme 

selectively targets and cleaves DNA synthesized from viral RNA 

only if a specific sequence is present, rendering it undetectable by 

the RNA sensor. If the sequence is not present, the DNA is not 

cleaved and the virus will be detected. Each test costs less than $1, 

and can be stored at room temperature for up to a year. 
 

The above examples of unsuccessful and successful diagnostic tests imply 

(a) that the value of a diagnostic test ultimately lies in its effect on patient 
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outcomes, (b) that a new test should only be introduced into clinical practice 

if it is more likely that it would contribute to improving health outcomes, 

and (c) that decision-making regarding a new test ought to involve selecting, 

from among many competing tests, the one that generates the highest level 

of accuracy.  

 
5. Summary and Conclusion 
 

In the sections above, we reexamined how the Criterion Standard Test  

(otherwise known as the Gold Standard Test) is determined in diagnostic 

testing, and we proposed a new selection methodology based on the P-Value 

associated with the well-known Pearson’s chi-squared test (χ2), the test used 

when testing for dependence between state of nature (disease present or not 

present) and evidence (test positive or negative measures). With the assistance 

of a hypothetical numerical example, we demonstrated that the cutoff point 

associated with the lowest P-Value of the Pearson’s chi-squared test is the 

one that maximizes overall accuracy, thus establishing the Criterion Standard 

Test. Although our methodology and the sums of squares approach are  

equally effective in selecting the optimum cutoff point, only the proposed 

new procedure selects based on statistical significance. Additionally, using a 

simple benefits / costs theoretical linear setting, we discussed the importance 

of net benefits of testing for accuracy and referenced harmful as well as 

beneficial diagnostic tests found in various literature sources.  

     In general, the proposed statistician test may be readily employed in any 

biomedical testing procedure described by the National Center for Biotech- 

nology Information (2017) and, more specifically, in conjunction with 

research involving biomarkers, such as estrogen (ER) and progesterone (PR) 

receptors, in breast cancer (see Varga et al., 2013). Furthermore, it can be 

added to the arsenal of tools utilized by the FDA as it endeavors to carry its 

mission, that is, to inform the public about harmful costs due to false -

positives and false-negatives as well as due to treatments based on refuted 

concepts and inaccurate or untrustworthy tests and products.  

     Concluding, we would like to remark on the gene-editing revolution that 

our society currently experiences. Clustered Regularly Interspaced Short 

Palindromic Repeat (CRISPR), as stressed by The Scientist (Custom publish- 

ing, October 2016), “is becoming the main procedure to knock-in or knock-

out genes or alter genetic sequences. Due to its simplicity, multiplexing 

capability and reagent availability, researchers are exploring the limits of its 

capabilities in model systems and for clinical applications. Efficient screen- 

ing and detection of gene editing events is critical to successfully generating 

edited cell lines or organisms.”   
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     The potential applications for genetic testing are enormous, given that 

almost every known disease having some aspect that is influenced by, if not 

directly caused by, metamorphoses in the genome of the organism. Genome 

tinkering with demonstrated potential to edit DNA in cell lines and embryos 

is a revolution to reckon with especially because it triggers debates that  

relate to, as stressed by Niemiec et al. (2016), ethical, legal and social issues.  
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NOTES 

 

     1. As reported by UK’s organization Health Knowledge (2016), “diagnostic tests 

are different than screening tests. The primary purpose of screening tests is to detect 

early disease or risk factors for disease in large numbers of apparently healthy 

individuals. The purpose of a diagnostic test is to establish the presence (or absence) 

of disease as a basis for treatment decisions in symptomatic or screen positive  

individuals (confirmatory test).” Key differences are reported in the following table: 
 

 Screening tests Diagnostic tests 

Purpose To detect potential disease indicators 
To establish presence/absence of 

disease 

Target 

population 

Large numbers of asymptomatic, but 

potentially at risk individuals 

Symptomatic individuals to 

establish diagnosis, or 

asymptomatic individuals with a 

positive screening test 

Test method Simple, acceptable to patients and staff 

Maybe invasive, expensive but 

justifiable as necessary to establish 

diagnosis 

Positive 

result 

threshold 

Generally chosen towards high 

sensitivity not to miss potential disease 

Chosen towards high specificity 

(true negatives). More weight given 

to accuracy and precision than to 

patient acceptability 

Positive 

result 

Essentially indicates suspicion of 

disease (often used in combination 

with other risk factors) that 

warrants confirmation 

Result provides a definite diagnosis 

Cost 

Cheap, benefits should justify the costs 

since large numbers of people will 

need to be screened to identify a small 

number of potential cases 

Higher costs associated with 

diagnostic test maybe justified to 

establish diagnosis. 
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     2. According to Copi et al. (2007), “Inductive reasoning (as opposed to deductive 

reasoning or abductive reasoning) is reasoning in which the premises are viewed as 

supplying strong evidence for the truth of the conclusion. While the conclusion of a 

deductive argument is certain, the truth of the conclusion of an inductive argument is 

probable, based upon the evidence given.” Conventionally, induction is reasoning 

from specific to general and deduction is reasoning from general to specific. 

     3. See Appendix 1 for more details on the Bayesian Theorem. 

     4. The ROC determines optimal sensitivity and specificity which establishes the 

highest possible degree of a test’s accuracy; and to the extent that diagnostic tests 

generate different ROCs, the ROC closest to the top left enables us to select the most 

useful test, the one with even higher “Sensitivity” and lower “1-Specificity.” 

     5. A theoretical depiction of Graph 2, with continuous data and a certain 

prevalence (e.g., 80%), would look as follows (where TN = Test Negative, TP = 

Test Positive, FN = False-Negative, FP = False-Positive): 

 
As the graph clearly shows, when the cutoff point moves to the right false-negatives 

rise and false-positives fall (vice versa when it moves to the left). Thus, balancing 

this tradeoff between false-negatives and false-positives should be an important goal 

of diagnostic testing. 
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Appendix 1 Bayesian Theorem, Proof, and Examples 

Simply, if H and E are two disjoint and exhaustive events with probabilities P(H) 

and P(E) greater than zero in a sample space, the conditional probabilities of H given 

E, P(H | E), and E given H, P(E | H), may be stated as follows:  

P(H | E) = P(H and E) | P(E) and P(E | H) = P(E and H) | P(H) or, 

P(H | E)P(E) = P(H and E) and P(H | E)P(H) = P(E and H).                                (1)  

Since the right sides of the equations in (1) are equal, the left sides may be set equal; 

hence, P(H | E)P(E) = P(E | H)P(H).  

Therefore, P(H | E) = P(E | H)P(H) | P(E)                                   (2) 

and P(E | H) = P(H | E)P(E) | P(H)                                          (3) 

Results (2) and (3) are Bayesian probabilities. 

     Generally, the Bayes’ Theorem and its proof may be stated as follows: Consider 

the following figure showing intersections in space W of E with events H1, …, H4.  

 
As per graph above, let the events H1, …, Hk form a partition of the space W such 

that P(Hj) > 0 for j = 1, …, k, and let E be any event such that P(E) > 0. Then for i = 

1, …, k,  

                                                      

                                                                                

 
(4) 
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Proof: by the definition of conditional probability, P(H i | E) = P(HiE) | P(E).  

The numerator on the right side of (4) is equal to P(H iE) and the denominator is 

equal to P(E). 

     To attempt an explanation about the practical usefulness of Bayesian analysis we 

proceed, without loss of generality, by assuming that theories may be stated, and  

experiments contacted, in terms of two variables summarized in two-variable con- 

tingency tables. Figure A1 portrays a state of nature variable vs. a hypothesis variable. 
 

Figure A1 State of Nature vs. Hypothesis 
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Clinical Illustration: Blood Sugar vs. Physical exercise 

Let variable one be blood sugar level and variable two physical exercise. A doctor 

tests 100 patients for blood sugar levels; 53 of them were diagnosed as high (H)  

blood sugar patients and 47 as low (L) blood sugar patients. Based on this initial 

information, the doctor estimates that the probabilities of high and low are,  

respectively, P(H) = 0.53 and P(L) = 0.47. These probabilities are called the prior 

probabilities.  

     The doctor, in turn, hypothesizes that frequent exercise contributes to low blood 

sugar levels; subject to consent and properly designed incentives (e.g., financial or 

other rewards), she convinces each one of the100 patients to participate in a year-

long clinical experiment designed to reveal whether they exercise frequently (Fr) or 

infrequently (In) subject to a reasonable and objectively chosen cutoff point. The 

cutoff point may consist of hours of exercise per day / week, or other, above (below) 

which exercise is classified as frequent (infrequent). At the end of the year-long 

period, out of the 53 diagnosed as high, 37 exercised infrequently and 16 frequently. 

Out of the 47 diagnosed as low, 19 exercised infrequently and 28 frequently. The 

probabilities that emerge from the doctor’s experiment are called the posterior 

probabilities. Prior and posterior data as well as statistical tests are summarized in 

Figure A2. The results indicate that blood sugar levels and exercise are not  

independent. 

     The posterior probabilities are reported in Figure A2; they are all Bayesian,  

computed similarly to P(T+) and P(T-) as shown below:  

     P(T+) = P(H | In) = [ P(In | H)P(H) | P(In) ] = [ (37 | 53)(53 | 100) | 56 | 100 ] = 

37 | 56 = 0.6607  

     P(T-) = P(L | Fr) = [ P(Fr | L)P(L) | P(Fr) ] = [ (28 | 47)(47 | 100) | 44 | 100 ] = 28 

| 44 = 0.6364 
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 Figure A2 Blood Sugar vs. Exercise 
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Appendix 2 

ID 

 

SUV 

 

Cancer 

1=present 

2=not present 

 
ID 

 

 

SUV 

 

Cancer 

1=present 

2=not present 

 
ID 

 

SUV 

 

Cancer 

1=present 

2=not present 

1 0 2  41 3 2  81 13 1 

2 0 2  42 3 2  82 13 2 

3 0 2  43 3 2  83 14 1 

4 0 2  44 3 2  84 14 2 

5 0 2  45 3 2  85 14 1 

6 0 2  46 3 2  86 14 1 

7 0 2  47 4 1  87 14 1 

8 0 2  48 4 2  88 14 2 

9 0 2  49 4 2  89 15 1 

10 1 2  50 4 1  90 15 1 

11 1 2  51 4 2  91 15 1 

12 1 2  52 4 2  92 15 1 

13 1 2  53 5 1  93 16 1 

14 1 2  54 5 2  94 16 1 

15 1 2  55 5 2  95 17 1 

16 1 2  56 5 2  96 17 1 

17 1 2  57 6 1  97 18 1 

18 2 2  58 6 2  98 18 1 

19 2 2  59 6 1  99 19 1 

20 2 2  60 6 2  100 20 1 

21 2 2  61 6 2     

22 2 2  62 6 2     

23 2 2  63 7 2     

24 2 2  64 8 1     

25 2 2  65 8 1     

26 2 2  66 9 1     

27 2 2  67 10 2     

28 2 2  68 10 1     

29 2 2  69 11 1     

30 2 2  70 11 1     

31 2 2  71 12 2     

32 2 2  72 12 2     

33 2 2  73 12 1     

34 2 2  74 12 1     

35 2 2  75 13 2     

36 2 2  76 13 1     

37 2 2  77 13 1     

38 2 2  78 13 2     

39 3 2  79 13 1     

40 3 2  80 13 1     

 

 


