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TWISTED SEQUENCES OF EXTENSIONS

KEVIN J. CARLIN

ABSTRACT. Gabber and Joseph [GJ, §5] introduced a ladder diagram between
two natural sequences of extensions. Their diagram is used to produce a
‘twisted’ sequence that is applied to old and new results on extension groups
in category O.

1. THE GABBER-JOSEPH ISOMORPHISM

Let A be an abelian category with enough projectives. Let E” = ExtpA (with
the convention that E’=0 if p<0). Let H —E'= homy. If E is used to represent
some E”, then use the relative notations, E* and E~, to represent E*"" and E* ™"
respectively.

Suppose that R and T are exact, mutually adjoint endofunctors defined on A.
Let # = RT. The unit of the adjunction (T, R) is n:Id — 6 and the co-unit of the
adjunction (R,T') is €: 0 — Id. Use these to define the functors,

C = Cokern D = Coimn
K =Kere I=Ime.
There are also natural transformations, ¢: I —1Id and 7:1d — D.
There is a natural adjoint pairing (C, K) so that C is right exact and K is
left exact. If M and N are objects in A, there are canonical exact sequences,

KN — 0N —»IN and DM — OM — CM . Each gives rise to a long exact sequence
of extensions.

THEOREM 1.1 [GJ, 5.1.8] Suppose that M is C-acyclic. There is a natural commu-
tative diagram with exact rows,

— E(M,KN) — E(M,0N) — E(M,IN) 2% E°(M,KN) —

S
— E(CM,N) — E(0M,N) — E(DM,N) 2 EYCM,N) — |

where B is an isomorphism. If DM is C-acyclic and IN = N, then o and v are
isomorphisms.

Proof. Let P—» M be a projective resolution. There is an exact sequence of chain
complexes,

0 — DP — 0P — CP — 0.
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2 K. J. CARLIN

Since M is C-acyclic, this is a resolution of the exact sequence,

0 — DM — O0M — CM — 0. (1.1.1)

Let X — DM and Z — C'M be projective resolutions. Use the horseshoe lemma
[W, 2.28] to construct a split exact sequence resolving diagram (1.1.1),

0 — X —Y —Z —0. (1.1.2)

By the comparison theorem [W, 2.3.7], there are chain maps a: X — DP and
c¢: Z — CP lifting Idpys and Ideps respectively. Using the splitting maps of di-
agram (1.1.2), construct a chain map b:Y — 0P lifting Idgs, and completing a
commutative diagram of chain complexes with exact rows,

00— X —Y — Z — 0

o I
0 — DP — P — CP — 0.
Applying H(—, N) yields a commutative diagram with exact rows,

0 — H(CP,N) — H(OP,N) —s H(DP,N)

l l l (1.1.3)

0 — H(ZN) — HY,N) — HX,N) — 0

Since P is a projective complex, there is also a natural commutative diagram of
complexes with exact rows,

0 — H(P,KN) — H(P,0N) — H(P,IN) — 0

| | or | (1.1.4)

0 — H(CP,N) — H(0P,N) — H(DP,N).

The chain map ¢p is uniquely defined by the diagram because H(wp, N)dpp =
H(P,tn). The first two vertical mappings are isomorphisms.

Combining diagram (1.1.3) and diagram (1.1.4), and applying [W, 1.3.4] yields
the Gabber-Joseph diagram. Since 6P —» M is a projective resolution, b is a
homotopy equivalence so 3 is an isomorphism. (So far, this is the same as the proof
given in [GJ, 5.1.8].)

Let f: P— X be a chain map lifting 75;. Then, by the uniqueness part of the
comparison theorem, af is homotopic to 7p. So, H(f, N)H(a, N)¢p is homotopic
to H(mp, N)¢pp =H(P, tn). Passing to cohomology, E(mar, N)a=E(M,tn).

Now suppose that DM is C-acyclic so that DX —» DM is a resolution. The
chain map D(f): DP — DX lifts Idppys so D(f)a is homotopic to mx. Hence
H(a, N)H(D(f), N)¢x is homotopic to H(mx, N)¢x =H(X,y).

By functoriality, H(f, N) H(X, :n) =H(P,n) H(f,IN) and, since 7 is a natural
transformation, H(wp, N)H(D(f), N)=H(f, N)H(rx, N). Then,

H(
H(mp, N)H(D(f), N)px =H(f, N)H(rx, N)px =H(f, N) H(X, 1n)
=H(P,.n)H(f,IN)=H(mp,N)pp H(f, IN).



TWISTED SEQUENCES 3

Since H(mp, N) is a monomorphism, H(D(f), N)¢x = ¢p H(f, IN) which means
that H(a, N)¢p H(f,IN) is homotopic to H(X, ). Passing to cohomology yields
aE(my, IN)=E(DM,ty).

If IN=N,E(M,ty)=1Id and E(DM,.x)=1d, so that « is an isomorphism. By
the long-five lemma, ~ is also an isomorphism. O

COROLLARY 1.2 If M and DM are C-acyclic, then E(M, KN) and E(CM,IN)
are isomorphic.

Proof. By standard properties of adjunction maps, T'(ex) is an epimorphism. So
I(vn) is an isomorphism as are 6(cy) and K (cy). In this way, I(IN), (IN), and
K(IN) will be identified with IN, KN, and N respectively. Applying theorem
1.1 to I N, there is a commutative diagram,

E(M,IN) 2% E'(M,KN)

q
E(DM,IN) 2 E'(CM,IN),

where the vertical mappings are isomorphisms and the primes indicate maps defined
with respect to IN. ([l

2. THE TWISTED SEQUENCE

THEOREM 2.1 Suppose that M and DM are C-acyclic. There is a commutative
diagram with exact rows,

[e3%

— E(DM,JN) -5 E(M,IN) -% E(DM,N) - E(DM,JN) —
H ] g H
— E(DM,JN) % EY(M,KN) L EY(CM,N) 2 E(DM,JN) — |

where JN = Cokerey. If DM = M, the first row is the long exact sequence associ-
ated to the exact sequence, IN — N —» JN.

Proof. Let ¢'» be the map defined by (1.1.4) with N =IN. Then H(wp, IN )¢, =1d.
Using the notation from the previous section,

H(ﬂ'P, N) H(DP7 LN)d);p = H(P, LN) H(wp, IN)(/)};
=H(P,.y)=H(zp, N)gp.

Because H(wp, N) is a monomorphism, H(DP, ()¢ = ¢p. Then
H(a, N)ép =H(a, N)H(DP,ux)dp = H(X, 1x) H(a, IN)¢)p.

Taking cohomology, a =E(DM,tx) . In a similar fashion, 8=E(0M,tx) 8 and
y=E(CM,tn)7.
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Diagram 1:

[e3%

— E(DM,JN) % E(M,IN) -% E(DM,N) % E(DM,JN) —

| | H H

— E(DM,JN) — E(DM,IN) —s E(DM,N) — E(DM,JN) —
(2.1.1)

The second row is the long exact sequence associated to IN — N — JN. Since
o’ is an isomorphism, define 0 so that the first square commutes. This produces
a commutative diagram with exact rows. If DM = M, o/ =1d which proves the
second conclusion.

Diagram 2:
— E(DM,JN) — E(DM,IN) — E(DM,N) — E(DM,JN) —

.| S

— BE(CM,JN) — E'(CM,IN) — E'(CM,N) — E'(CM,JN) —
(2.1.2)

This is a commutative diagram with exact rows where the vertical maps are the
natural connecting maps.

Diagram 3:
— BE(CM,JN) — E'(CM,IN) — E'(CM,N) — E'(CM,JN) —

S |

— E(DM,JN) % E'(M,KN) - EY(CM,N) > E(DM,JN) —
(2.1.3)

Since T'(ey) is surjective, TJN =0. By the adjoint pairing (R,T), E(OM,JN) =
E(TM,TJN)=0 so J3 is an isomorphism. Define d and x to make the diagram
commutative. Then the second row is also exact.

Assembling the three diagrams proves the first conclusion since d5 1§53 =1d and
N—1 g/ ! __
()t a' =65. O

The second row of 2.1 will be referred to as a twisted sequence.

3. APPLICATIONS IN CATEGORY O: OLDER RESULTS

Let g be a finite-dimensional semisimple Lie algebra over C. Category O is
the category of g-modules introduced in [BGG]. For background information on
category O, we will rely on [Hum2] where the original sources and the later devel-
opments can be found.

Let S be the set of simple root reflections in the Weyl group W. The stabilizer
of a weight A under the dot action is Wy. Let wy denote the longest element and
let 1 denote the identity. The Bruhat order on W is denoted by <. Let £ be its
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characteristic function defined by

£(2,y) 1 ifx<yand
x? = .
Y 0 otherwise.

Let ¢ denote the length function on W. If z,y e W, l(x,y) =L(y) — {(z).

The R-polynomials are defined in [Huml, §7]. Let r,(x,y) denote the coeffi-
cient of ¢ in (—1)""PR, , where n={(z,y). A recursion for r,(z,y) begins with
rp(wo,y) =0 if p#0 and ro(wo,y) =E&(wo,y). If x <wp, choose an s € .S so that
xs > x. Then, for all p,

rples. ys) s>y,
)= 3.0.1
ri”(x y) {T‘p(xs,y)+7'p1($8,y) _r;nfl(xS?yS) if ys <y. ( )

The following properties of the r, can be proved by induction or translated from
properties of the R-polynomials in [Huml, §7]. If r,(z,y) #0, then = <y and
0<p<{(z,y). Also ro=¢ and, if n="~(z,y), rp(z,y) =rn_p(z,y).

Specializing (3.0.1) to p=1, r1(wg, y) =0 and, if xs >z,

ri(xs,ys) if ys >y,
ri(z,y) =< ri(zs,y) +1 if ys<y and xs £ ys, (3.0.2)
ri(zs,y) if ys <y and zs <ys.

Choose anti-dominant integral weights A and p so that W{={e} and W = {e, s}
where s € S. If x € W, let M, denote the Verma module with highest weight x - A.
The block of @ with projective generator M, is Oy [Hum2, 4.9]. Here, T is the
translation functor T}' where R is its left and right adjoint T, ’;\ [Hum2, 7.1-2]. A
module M € O, is C-acyclic if, and only if, DM =M [C, 2.9] and this condition is
true for each M, [C, 2.8(i)].

For z,y € W, write E” (z, y) for E”(M,,, M,)) and e,(z, y) for its dimension. Also,
for z and z <y in W, write E"(z,y/2) for EP(M,, M, /M,) and let e,(z,y/z) be
the dimension.

Since M, is projective, e,(wo,y) =0 if p#0. By the properties of homomor-
phisms between Verma modules, eg = & [Hum2, 5.2], so eg =r. The vanishing
properties also match. If e,(z,y) #0 then 2 <y and 0 <p </{(z,y) [Hum?2, 6.11].

The twisted sequence can be used to re-prove some of the results of [GJ, 5.2].

PROPOSITION 3.1 [GJ, 5.2.1] Suppose that xs>x and ys <y. For all p,

ep(xs,y) = ep(z,ys).
Proof. Let M =M,y and N=M,s. Then CM =M,, IN=N, and KN =M, [C,
3.5]. By 1.2, E(xs,y) is isomorphic to E(z, ys). a

Suppose that s >z and ys <y. Apply 2.1 with M = M,, and N =M,. Then
IN =M,,, CM =M,, and KN = M,. There is a commutative diagram with exact
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rows,

— E (zs,y/ys) LN E(zs,ys) = E(zs,y) AN E(zs,y/ys) —

H all azl H (3.1.1)

— E (zs,y/ys) 4, E'(zs,y) - E'(z,y) = E(zs,y/ys) — .
The following result is the twisted equivalent of [GJ, 5.2.3].
PROPOSITION 3.2 Suppose that xs>x and ys <y. For all p,
epl@,y) = ep(@s,y) > e (w5, ) — e (w3, ys)
and this is an equality if, and only if, Ker dP~' =Ker 6?1 and Ker d?~2 =Ker §P2.
Proof. Since d =6, 6, Kerd C Kerd. Identify E with E°™" and d with d?~2 in
diagram (3.1.1). Because the second row is exact, there is a short exact sequence
0 — Imd?~? — E"(zs,y) — E"(z,y) — Kerd?™! — 0.
Then
ep(,y) — ep(ws,y) =dimKer dP~! — (e,_o(zs,y/ys) — dim Ker @’ ~?)
> dim Ker 07! — (e,_a(zs,y/ys) — dim Ker 67~ 2)
=ep_1(zs,y) — ep_1(xs,ys),

where the last equality uses the exactness of the first row of (3.1.1). O
COROLLARY 3.3 [C, 3.9] Suppose that xs >z, ys <y, and xs £ ys. For all p,
ep(xa y) = ep(xs7 y) + epfl(xsv y)

Proof. Because E(zs,ys) =0, 6 =0 and d =0. The conditions for equality in 3.2
are satisfied. O

These results led naturally to the conjecture that e, =r, for all p [C, 3.1]. It
was soon discovered that there are examples where r,(x,y) is negative [Boe], so
equality in 3.2 can not hold in general. One easy consequence of [GJ, 5.2.3] is that
r1 is, at least, a lower bound for e;. (Later, it will be shown that e; #7r;.)

PROPOSITION 3.4 €1 > 1y

Proof. Assume there is a counterexample, ej(x,y) < ri(z,y), with £ maximal in
the Bruhat ordering. If x =wy, e1(wp,y) =0=r1(wo,y) so x <wp. Choose an s € S
with s >z. There are two cases to consider.

If ys >y, then ej(x,y) =e1(xs,ys) by 3.1. Since = is maximal, e;(zs,ys) >
ri(xzs,ys) =r1(z,y) by equation (3.0.2).

If ys <y, then 3.2 implies that e1(z,y) > e1(zs,y) + eo(xs,y) — eo(xs, ys). Since
eo =710 and x is maximal, ej(x,y) > ri(zs,y) + ro(xs,y) — ro(zs,ys) =r1(z,y) by
(3.0.1).

In either case, e1(x,y) >ri(x,y), which contradicts the choice of x. O

The twisted sequence in diagram (3.1.1) has the same terms as the two-line
spectral sequence of [C, 3.4]. Tt is an indirect resolution of the conjecture that the
coboundary of the spectral sequence should factor as d=4; § [C, p. 37]. It can also
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be substituted for the spectral sequence in many of the proofs. As an example, one
result that is needed below will be re-proved here.

PROPOSITION 3.5 [C, 3.8] If t <y and n=4{(x,y), then e,(x,y)=1.

Proof. Suppose that z <y and assume that there is a counterexample with z max-
imal. If z =wy, then y =wp, n=0 and eg(wp, wp) =1 so  <wy. Choose an s € S
so that s > x. There are two cases to consider.

If ys >y, and e,(z,y) =en(xs,ys) by 3.1. Because z is maximal and xs < ys,
en(xs,ys)=1.

If ys <y, then consider diagram (3.1.1) with E=E""" and apply the vanishing
properties.

— E (xs,y/ys) LN 0 — E(zs,y) — E(zs,y/ys) — 0

H Lol H

— E (zs,y/ys) Ao E+(x,y) — E(xs,y/ys) — 0.

Then d2 is an isomorphism, so e,(z,y) = en—1(xs,y). But e,_1(zs,y) =1 since
xs <y and x is maximal.
In either case, e, (x,y) =1, which contradicts the choice of z. (]

In the remainder of this section, the recursive calculation of e,,_1(z, y) where n=
£(z,y) will be considered. Suppose that & < zs <ys <y for some s € S. Applying
diagram (3.1.1) with E=E""" yields

— E (zs,y/ys) LN E(xs,ys) — E(zs,y) — E(xs,y/ys) — 0

| e

— E (zs,y/ys) LN E+(xs,y) — E+(3:,y) — E(zs,y/ys) — 0.

By 3.5, en—a(xs,ys) =en—1(xs,y) =1 so that ¢; is an isomorphism or zero. But 7
is part of the exact sequence

Enfz(a:s,ys) LEN Enfl(xs,y) — E"fl(Mm,HMy) — 0,

showing that d; is an isomorphism, if and only if, E" " (M, 6M,) is zero. By the
adjoint pairing (T, R), E" " (Mys,0M,) is isomorphic to E" " (T'M,s, TM,). The
vanishing behavior of this singular extension group determines whether d is zero or
surjective. This suggests a conjecture on singular vanishing.

CONJECTURE 3.6 Ifx <xzs<ys<y, then Enfl(TMm, TM,)=0, where n="{(z,y).
PROPOSITION 3.7 Suppose that x <y and let n =4£(x,y). Conjecture 3.6 implies
that

en—l(xv y) =T (:E, y)
Proof. Assume there is a counterexample with £ maximal. Because y < wq, x <wg
and there is an s € S with xs > z. There are three cases to consider.

If ys >y, 3.1 implies that e,_1(x,y) =e,—1(xs,ys). Since x is maximal and
s <yYs , en—1(xs,ys) =r1(xs,ys) =ri(x,y) by equation (3.0.2).
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If ys<y and zs £ ys, ep—1(x,y) =en—1(xs,y) +en—2(xzs,y) by 3.3. Since zs <y,
en—1(xs,y) =1 by 3.5. If zs=y, then n=1 and eq(x,y) =1ro(z,y) =r1(x,y) so
xs <y by the choice of . Because x is maximal, e,_a(zs,y) =ri(xs,y). Then
en—1(x,y) =1+ ri(xs,y)=ri(x,y) by equation (3.0.2).

If v <xs <ys<y and assuming that conjecture 3.6 is true, J; in diagram
(3.5.1) is an isomorphism. Then e,_1(x,y) =en—2(xs,y). Because = is maximal,
en—z2(xs,y) =r1(zs,y) =r1(z,y) by equation (3.0.2).

In each case, e,_1(x,y) =r1(x,y), which contradicts the choice of x. O

4. APPLICATIONS IN CATEGORY O: YOUNGER RESULTS

Most of the results of the last section have been known for a long time. The
newer results involve ;. The first new result in this direction was published by
Mazorchuk in 2007.

PROPOSITION 4.1 [Maz, Lemma 33] e (1, wy) =|S5] .

COROLLARY 4.2 For all x,y e W,
(i) ei(x,wo) =ri(z,wo) and
(11> 61(1, y) :Tl(l, Zl/) .

The first item of 4.2 is equivalent to the original statement of [Maz, Theorem
32] (adjusting for anti-dominance and ignoring the grading). It is expressed here
in terms of ;. The proof of the corollary uses the following lemma.

LEMMA 4.3 Suppose that xs > x and ys <y for some s€S. If e1(z,y) =r1(x,y),
then ey (zs,y) =r1(xs,y)

Proof. Suppose that ej(zs,y) #r1(zs,y). By 3.4, e1(xs,y) >r1(zs,y). Using 3.2
and 3.0.1,

er(z,y) 2 er(ws,y) + eo(ws,y) — eo(ws, ys)
> 7’1(135, y) + TO(ISa y) - TO(‘TSa yS) :Tl(xa y)a
so e1(z,y) #ri(z,y) 0

Proof of the corollary. To show that eq(1,wg) =r1(1,wp), apply [Huml, 7.10(20)]
with =1 and w=wy to get
Z Rl,y = qnv

1<y<wo
where n={(1,wp). The coefficient of ¢"~1 on the left-hand side is
(=1)'ru—1(1,wo) + 15,

SO 7”‘1(1, ’wo) :’I"n_l(l,w()) = |S|

To prove item (i), assume that there is a counterexample with x minimal. Then
x> 1 and there is an s € S with zs < z. By minimality of x, e1(xs, wo) =71 (xs, wo).
The lemma implies that e (x,wg) =71 (z, wo), contradicting the choice of x.

The proof of item (ii) is similar. O
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The next development was Noriyuki Abe’s preprint that originally appeared on
the ArXiv in 2010. Let v(z,y) =e1(z,y) — eo(x, wo/y) if x <y and let v(x,y) =0
if e £y. If <y, then v(x,y)=dim V(woz,wpy) in Abe’s notation. Then [Abel,
theorem 4.4] becomes v =71. As stated, the theorem is not true. There are 16 pairs
(z,y) in type Bs with r1 (z,y) =4 but, by definition, v <3 [Abel, Theorem 1.1(1)].
Abe’s recursion for V' [Abel, Theorem 4.3] does imply that v <r; (by comparison
with 3.0.2). Then, combined with 3.4, v <r; <e; or

Tl(xvy) Sel(xay) Srl(xay) + 60(x7w0/y)~

Note that eg(1,wp/y) =0 and eq(x, wo/wo) =0, so Abe’s inequality does generalize
4.2. Although v #r1, Abe has communicated an example in type Bs showing that
e1 #r1 [Abe2].

In the remainder, the twisted sequence approach will be used to prove properties
of v that correspond with Abe’s results from [Abel].

PROPOSITION 4.4 If xs>x and ys <y, then eg(xs,wo/y) =eo(x,wo/ys).

Proof. Let M = M,s and N = MwO/MyS. There is a commutative diagram with
exact rows,
0 — My, — 0M,, — ON — 0

| | | (4.4.1)

0 — My — M,, — N — 0.
By the snake lemma, KN = M,,, /M, . By the adjoint pairing (C, K), H(M,s, KN)
and H(M,, N) are isomorphic. O

By 3.1, if zs > and ys <y, e1(zs,y) = e1(x,ys) which proves the following
property of v, which corresponds to [Abel, 4.3(1)].

COROLLARY 4.5 If zs>x and ys <y, then v(zs,y) =v(z,ys).

Next, there is another ladder diagram that links extensions of fractional Verma
modules to the twisted sequence.

PROPOSITION 4.6 Suppose that xs > x and ys <y . There is a commutative diagram
with exact rows,

— E (xs,y/ys) ILIN E(z,wo/ys) — E(x,wo/y) — BE(zs,y/ys) —

H | | H

— Bws,y/ys) = Blwsy) = Bley) = Blasy/ys) —
where the second Tow is the same as the second row of diagram (3.1.1).

Proof. The proof is similar in structure to the proof of 2.1. Fix a commuting
triangle of Verma module injections,

My, — M,

H | (4.6.1)
Mys — My,.
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Diagram 1:

— E (xs,y/ys) LN E(z,wo/ys) — E(z,wo/y) — E(xs,y/ys) —

| | H |

— E(z,y/ys) — B(z,wo/ys) — E(z,wo/y) — E'(z,y/ys) —

The map d3 is the same as the isomorphism d3 from diagram (2.1.2) with M = M,
and N = M,. The second row is the long exact sequence associated to the exact
sequence,

My /Mys — My, /Mys = My, /M,.

Define § and k so that the diagram commutes. This produces a commutative
diagram with exact rows.

Diagram 2:

— E(z,y/ys) — E(z,wo/ys) — E(z,wo/y) L E+(J:,y/y5) —

H | | H

— E(z,y/ys) 2% E(z,ys) — E'(x,y) — E'x,y/ys) —

This is a commutative diagram with exact rows where d;, 4 < k <7 are natural
connecting maps (all derived from rotations of diagram (4.6.1)). For example, the
middle square commutes because of the short ladder,

0 — My, — My, — My,/Mys — 0

Lo !

0 — My, — My, — My,/M, — 0.

Diagram 3:
—  B(z,y/ys) — Ef(z,ys) — E'(z,y) — Ef(z,y/ys) —
d gl H d
- d + 2l + X
— E (zs,y/ys) — E'(ws,y) — E'(z,y) = El(zs,y/ys) —
This is a commutative diagram with exact rows because it is diagram (2.1.3) with

M =M, and N = M,. Since o' is an isomorphism, assembling the diagrams
completes the proof. O

Applying the same argument as in the proof of 3.2 yields the following inequality.
PROPOSITION 4.7 Suppose that xs>x and ys <y. For all p,

ep(x,y) — ep(ws,y) 2 €p1(x, wo/y) — ep—1(z, w0 /ys).
This is an equality if, and only if, KerdP~! =Ker §?~! and Ker d?~2 =Ker §P~2.
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COROLLARY 4.8 If zs>x and ys <y, then

er(z,y) — er(xs,y) > eo(x, wo/y) — eo(xs,wo/y)
and this is an equality if, and only if, Kerd® =Ker§°
Proof. Taking p=1in 4.7,

61($7y) - 61(1‘8,y) > eo(a?,wo/y) - eo(a:,wo/ys).
By 4.4, eq(z,wo/ys) =eo(xzs, wo/y). O

The conclusion is equivalent to v(z,y) > v(xs,y). When xs < ys, Abe proves
v(x,y) =wv(xs,y) by showing that the images of E!(xs, y) and E'(z,) in E'(z, wy)
are the same [Abel, 4.3(2)].

The preceding proposition is sufficient, by itself, to explain Abe’s counter-example
for e; =r1. In type Bs, let s1, s2, and s3 be the simple root reflections, where s1 5
has order 3 and sss3 has order 4. Take = = s183, ¥ = wyS3 = S2535152535251S2,
and s = sg. Using the work of H. Matumoto [Mat] on scalar, generalized Verma
module homomorphisms, Abe shows that there is a nonzero homomorphism be-
tween M, and M., /M, so eo(z,wo/y) #0 [Abe2]. Kazhdan-Lusztig multiplicities
imply that eq(z, wo/y) —eo(zs,wo/y) =1. By 4.8, e1(x,y) > e1(xs,y), which means
e1(z,y) #ri(z,y).

PROPOSITION 4.9 Suppose that x <xzs <y and ys<y. If xs £ ys, then v(x,y) <
v(zs,y) + 1 and this is an equality if, and only if, Ker 69 =0.

Proof. In 4.6, d =0 by 3.3. Also eg(xs,y/ys) =1 implies that eg(z,wo/y) —
eo(x,wo/ys) <1. O

The condition for equality in 4.9 must somehow be equivalent to the condition
vs & sV (wozxs, woy) from [Abel, 4.3(2)]. Finally, another twisted sequence can be
used to prove a result that is also consistent with [Abel, 4.3(2)].

Suppose that xs >z and ys <y. Let M = M, and N = M,,,/M,s. There is a
twisted sequence associated to N. From diagram (4.4.1), IN = M, s/Mys so, by
2.1, there is a commutative diagram with exact rows,

— E (s, %) 2 E(zs, %22) = E(zs, 32) = E(zs, 12) —

’ 5{ 5{ H (4.9.1)

— E(zs,22) -4 Blas, @) 2 Bz, %) X E(as, 20) — |

? wos y ’ ys 7 wos

PROPOSITION 4.10 Suppose that x <xzs <y and ys <y. If xs £ wps, then v(z,y)=
v(xzs,y) + 1.

Proof. Because ys < wgs, xs £ wps implies zs £ ys and hence eg(zs, wos/ys) =0. If
E is identified with E° in diagram (4.9.1), & is an injective map, which implies that
05 is injective. Working through the definitions, there is a commutative diagram,

0 — H(zs,y/ys) — H(zs,wo/ys)

] o|

E' (2, wo/ys) = E'(z,wo/ys),
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where ¢ is the homomorphism defined in the proof of 4.6. Since Jy is injective,
Kerd =0 and v(z,y) =v(zs,y) + 1 by 4.9. O

In a similar vein, one can prove that v(z,y) =v(xs,y) if x <xs <ys <y and
eo(xs,wps/ys) =0. In that case, ej(x,y) =e1(xs,y) as well.

If the goal is a general recursive formula for e, then the goal is well over the hori-
zon. The classic conjecture, e; =11, is false. Abe’s recursion for v is very effective
(and v is bounded above by the rank of g), but the resulting determination of e; de-
pends on the very difficult problem of generalized Verma module homomorphisms.
If x <y and ep(x,wo/y) is known, then e (z,y) =v(z,y) + eo(x, wo/y).
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